跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳沛融
Pei-Rong Wu
論文名稱: 吡喀酮鹼基矽烷/Nafion複合質子交換膜於燃料電池的應用
Nafion / Py Silane Modified SiO2 Composite Membrane for Fuel Cell
指導教授: 諸柏仁
Po-Jen Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 100
語文別: 中文
論文頁數: 101
中文關鍵詞: 複合薄膜官能基化二氧化矽原位聚合質子交換膜,直接甲醇燃料電池
外文關鍵詞: py silane、Functionalized SiO2、In-Situ polymeriza, Composite Nafion membrane, Direct methanol fuel cell
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在燃料電池系統中,介於陰陽極之間的質子交換膜最急迫需要解決的問題是:(一)高溫下,薄膜失水速度過快,致使導電度急遽下降;(二)甲醇竄透問題嚴重,造成效能低落;(三)薄膜使用壽命不足,經長時間使用後薄膜易損壞。本研究構想是將具有鹼基修飾的SiO2 (f-SiO2)均勻的構建在Nafion膜的親水孔道中達成修飾Nafion目標。為避免有機-無機物產生分相本研究使用原位凝膠 (in-situ sol-gel)法製備,主要區別是本方法中無機矽氧(f-SiO2)奈米粒子會在Nafion溶液中成核並與Nafion成膜的過程中同時成長。
    由SEM和Si- mapping實驗中可證實所製備的有機/無機複合薄膜奈米粒子尺寸大小相近(highly homogeneous)且均勻分散。TEM中顯示15-1p4T膜材展現了較佳的親、疏水區域的大小及分佈。XRD證明加入適量的鹼基無機物能幫助Nafion主結構的結晶度提高,尤以15 phr的添加量時有較佳的表現。本系統中最佳化的無機物含量在15phr和鹼基比例在base silane:TEOS = 1:4,在此條件下的複合薄膜(15-1p4T)的複合薄膜展現最低的Water uptake和Swelling ratio數值,導電度雖然減少了約17%、但甲醇滲透也改善了近50%;選擇性(C/P 比)上,較reNafion增進了60%~70%。另一方面,由變溫導電度中所求得的活化能,15-1p4T比reNafion減少50%以上,證明本複合膜材中已構建一條更適合質子傳導的路徑。由於無機物具有保水的性質當高溫低濕環境(20% RH)下,質子導電度仍能維持在1×10-3S/cm 以上。在70oC的直接甲醇燃料電池效更可以高達88.2mW/cm2,優於同條件下N117的結果。
    綜合以上各項實驗結果顯示本材料設計已成功改善Nafion薄膜的微結構,使薄膜擁有低膨潤率、質子傳導所需活化能較低、無機物高度分散、高C/P ratio等優點,提供一個更適用於高溫直接甲醇燃料電池的質子交換膜。


    In the fuel cell system, the most urgent issue of proton exchange membrane, which separates anode and cathode are: (1) the rapid loss of water at high temperature, which leads to a rapid decline of conductivity; (2) The cross-over of methanol fuel, which deteriorated the fuel cell performance; and (3) the mechanical and electrochemical durability that membrane disintegrated after prolonged usage, thus limited fuel cell lifetime. The membrane is designed based on the idea that Nafion channel morphology modified or tunable by incorporating a base-modified SiO2 nano-particle in-beded in the hydrophilic domains. To prevent the organic-inorganic phase separation in the composite material, the novel membrane, Nafion/ pyrrolidone silane (Py-silane) modified SiO2 composite (f-SiO2) were prepared by in-situ sol-gel method where the silica particle first nucleated in Nafion solution and growth in dimension during the Nafion membrane formation.
    SEM and Si-mapping confirmed the silica nano-particle is homogeneously distributed in the composite membrane. TEM results indicated the membrane 15-1p4T displayed the best morphology where the hydrophilic and hydrophobic domains maintains the most suitable size and most uniform distribution. Crystallinity provided by XRD shows the addition of alkaline-modified SiO2 has raised the crystallinity on Nafion main chain structure (PVdF), which is especially true for the 15 phr sample. The composite membrane bearing 15 phr silica content with base silane : TEOS ratio = 1:4 (15-1p4T), yielded the lowest water uptake, and smallest swelling ratio. Although the conductivity is reduced about 17%, its methanol permeability is reduced about 50%, leading to a better selectivity (C/P ratio) over recast-Nafion of 60%to 70%. In, addition, the activation energy derived from variable temperature water diffusion constant is about half of that in recast-Nafion, suggesting a novel water transport path which is more suitable for proton conduction. As moisture is preserved by the inorganic moiety, proton conductivity is not lost at low humidity (~1×10-3S/cm under 20% RH). The DMFC performance reached 88.2mW/cm2 under 70oC which is better than N117 under the same operating condition.
    All results indicated this material has successfully tailored the Nafion membrane micro-structure. This proton exchange membrane promises low swelling ratio, lower proton conduction activation energy, highly dispersed inorganic composite, and higher C/P ratio; suitable for direct methanol fuel cell to operate at elevated temperature.

    中文摘要 I 英文摘要 II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 燃料電池原理及其組成 2 1-3 研究動機 5 第二章 文獻回顧 7 2-1 燃料電池及質子交換膜介紹 7 2-2 Nafion薄膜的改質 10 2-3 Nafion微結構和性質探討 20 2-4 其他種類薄膜和修飾方法 26 2-5 抑制甲醇滲透 28 第三章 實驗方法與原理 30 3-1 實驗儀器原理及介紹 30 3-1-1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM;Energy Dispersive System, EDS) 30 3-1-2 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 31 3-1-3 X光散射光譜儀(Wide-angle X-Ray Diffraction, WXRD) 32 3-1-4薄膜吸水率(Water Uptake)及膨潤率(Swelling) 33 3-1-5 NMR變溫擴散實驗(Diffusion) 33 3-1-6小角度X光散射儀(Small-Angle X-ray diffraction Spectrometer, SAXS) 34 3-1-7 交流阻抗儀(AC-impedance) 36 3-1-8甲醇滲透率(Methanol permeability) 38 3-1-9 直接甲醇燃料電池效能測試 (DMFC perfromance) 39 3-2 複合薄膜製備方法 42 3-2-1 鹼性官能基矽烷製備方法 42 3-2-2 複合薄膜製備方法 42 3-3 實驗用藥品 43 3-4 實驗用儀器 44 3-5 實驗樣品命名方式 45 第四章 結果與討論 46 4-1 不同f-SiO2含量薄膜性質的探討 47 SEM 薄膜微結構影像 47 TEM 微結構鑑定 49 XRD 薄膜結晶度分析 50 保水性及膨潤性質比較 53 導電度與甲醇滲透率比較 55 Selectivity薄膜選擇性 57 變濕導電度與變溫導電度分析 58 NMR水分子擴散速率比較 60 SAXS 親水孔道尺寸分析 61 4-2 不同鹼基比例薄膜性質的探討 64 SEM 薄膜微結構影像 64 TEM 微結構鑑定 65 XRD 薄膜結晶度分析 67 保水性及膨潤性質比較 69 導電度與甲醇滲透率比較 71 Selectivity薄膜選擇性 72 變濕導電度與變溫導電度分析 74 4-3 直接甲醇燃料電池效能測試 76 第五章 結論與未來展望 78 參考文獻 80

    [1] Tripathi, B. P.; Shahi, V. K. "Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications" Progress in Polymer Science, vol.36, pp.945-979, 2011.
    [2] "http://www.energi.kemi.dtu.dk/Forskning/fuelcells.aspx"
    [3] Hogarth, W. H. J.; Diniz da Costa, J. C.; Lu, G. Q. "Solid acid membranes for high temperature (>140oC) proton exchange membrane fuel cells" Journal of Power Sources, vol.142, pp.223-237, 2005.
    [4] Adjemian, K. T.; Srinivasan, S.; Benziger, J.; Bocarsly, A. B. "Investigation of PEMFC operation above 100 °C employing perfluorosulfonic acid silicon oxide composite membranes" Journal of Power Sources, vol.109, pp.356-364, 2002.
    [5] Adjemian, K. T.; Lee, S. J.; Srinivasan, S.; Benziger, J.; Bocarsly, A. B. "Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140oC" Journal of The Electrochemical Society, vol.149, pp.A256-A261, 2002.
    [6] Lin, C. W.; Thangamuthu, R.; Yang, C. J. "Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications" Journal of Membrane Science, vol.253, pp.23-31, 2005.
    [7] Chu, D.; Gilman, S. "The Influence of Methanol on O[sub 2] Electroreduction at a Rotating Pt Disk Electrode in Acid Electrolyte" Journal of The Electrochemical Society, vol.141, pp.1770-1773, 1994.
    [8] Peighambardoust, S. J.; Rowshanzamir, S.; Amjadi, M. "Review of the proton exchange membranes for fuel cell applications" International Journal of Hydrogen Energy, vol.35, pp.9349-9384, 2010.
    [9] Lee, W.; Kim, H.; Kim, T. K.; Chang, H. "Nafion based organic/inorganic composite membrane for air-breathing direct methanol fuel cells" Journal of Membrane Science, vol.292, pp.29-34, 2007.
    [10] Alberti, G.; Casciola, M. "Composite Membranes For Medium-Temperature Pem Fuel Cells" Annual Review of Materials Research, vol.33, pp.129-154, 2003.
    [11] Smitha, B.; Sridhar, S.; Khan, A. A. "Solid polymer electrolyte membranes for fuel cell applications—a review" Journal of Membrane Science, vol.259, pp.10-26, 2005.
    [12] Haubold, H. G.; Vad, T.; Jungbluth, H.; Hiller, P. "Nano structure of NAFION: a SAXS study" Electrochimica Acta, vol.46, pp.1559-1563, 2001.
    [13] Watanabe M., U. H., Seki Y.,Emori M., "The Electrochemical Society Meeting" vol.PV94-2,Abstract No.606, pp.946-947, 1994.
    [14] Mauritz, K. A. "Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides" Materials Science and Engineering: C, vol.6, pp.121-133, 1998.
    [15] Jiang, R.; Kunz, H. R.; Fenton, J. M. "Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol–gel reaction and solution casting for direct methanol fuel cells" Journal of Membrane Science, vol.272, pp.116-124, 2006.
    [16] Wang, K.; McDermid, S.; Li, J.; Kremliakova, N.; Kozak, P.; Song, C.; Tang, Y.; Zhang, J.; Zhang, J. "Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells" Journal of Power Sources, vol.184, pp.99-103, 2008.
    [17] Li, C.; Sun, G.; Ren, S.; Liu, J.; Wang, Q.; Wu, Z.; Sun, H.; Jin, W. "Casting Nafion–sulfonated organosilica nano-composite membranes used in direct methanol fuel cells" Journal of Membrane Science, vol.272, pp.50-57, 2006.
    [18] Gnana Kumar, G.; Kim, A. R.; Suk Nahm, K.; Elizabeth, R. "Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC" International Journal of Hydrogen Energy, vol.34, pp.9788-9794, 2009.
    [19] Tang, H.; Wan, Z.; Pan, M.; Jiang, S. P. "Self-assembled Nafion–silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells" Electrochemistry Communications, vol.9, pp.2003-2008, 2007.
    [20] Wang, H.; Holmberg, B. A.; Huang, L.; Wang, Z.; Mitra, A.; Norbeck, J. M.; Yan, Y. "Nafion-bifunctional silica composite proton conductive membranes" Journal of Materials Chemistry, vol.12, pp.834-837, 2002.
    [21] Alvarez, A.; Guzmán, C.; Carbone, A.; Saccà, A.; Gatto, I.; Passalacqua, E.; Nava, R.; Ornelas, R.; Ledesma-García, J.; Arriaga, L. G. "Influence of silica morphology in composite Nafion membranes properties" International Journal of Hydrogen Energy, vol.36, pp.14725-14733, 2011.
    [22] Staiti, P.; Aricò, A. S.; Baglio, V.; Lufrano, F.; Passalacqua, E.; Antonucci, V. "Hybrid Nafion–silica membranes doped with heteropolyacids for application in direct methanol fuel cells" Solid State Ionics, vol.145, pp.101-107, 2001.
    [23] Lin, C.; Haolin, T.; Mu, P. "Periodic Nafion-silica-heteropolyacids electrolyte t for PEM fuel cell operated near 200 °C" International Journal of Hydrogen Energy, vol.37, pp.4694-4698, 2012.
    [24] Kannan, R.; Parthasarathy, M.; Maraveedu, S. U.; Kurungot, S.; Pillai, V. K. "Domain Size Manipulation of Perflouorinated Polymer Electrolytes by Sulfonic Acid-Functionalized MWCNTs To Enhance Fuel Cell Performance" Langmuir, vol.25, pp.8299-8305, 2009.
    [25] Matos, B. R.; Santiago, E. I.; Fonseca, F. C.; Linardi, M.; Lavayen, V.; Lacerda, R. G.; Ladeira, L. O.; Ferlauto, A. S. "Nafion--Titanate Nanotube Composite Membranes for PEMFC Operating at High Temperature" Journal of The Electrochemical Society, vol.154, pp.B1358-B1361, 2007.
    [26] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. "Formation of Titanium Oxide Nanotube" Langmuir, vol.14, pp.3160-3163, 1998.
    [27] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. "Titania Nanotubes Prepared by Chemical Processing" Advanced Materials, vol.11, pp.1307-1311, 1999.
    [28] Chen, Z.; Holmberg, B.; Li, W.; Wang, X.; Deng, W.; Munoz, R.; Yan "Nafion/Zeolite Nanocomposite Membrane by in Situ Crystallization for a Direct Methanol Fuel Cell" Chemistry of Materials, vol.18, pp.5669-5675, 2006.
    [29] Matos, B. R.; Santiago, E. I.; Rey, J. F. Q.; Ferlauto, A. S.; Traversa, E.; Linardi, M.; Fonseca, F. C. "Nafion-based composite electrolytes for proton exchange membrane fuel cells operating above 120°C with titania nanoparticles and nanotubes as fillers" Journal of Power Sources, vol.196, pp.1061-1068, 2011.
    [30] Schmidt-Rohr, K.; Chen, Q. "Parallel cylindrical water nanochannels in Nafion fuel-cell membranes" Nat Mater, vol.7, pp.75-83, 2008.
    [31] Kwon, O.; Wu, S.; Zhu, D.-M. "Configuration Changes of Conducting Channel Network in Nafion Membranes due to Thermal Annealing" The Journal of Physical Chemistry B, vol.114, pp.14989-14994, 2010.
    [32] Bass, M.; Berman, A.; Singh, A.; Konovalov, O.; Freger, V. "Surface Structure of Nafion in Vapor and Liquid" The Journal of Physical Chemistry B, vol.114, pp.3784-3790, 2010.
    [33] Ma, C.-H.; Yu, T. L.; Lin, H.-L.; Huang, Y.-T.; Chen, Y.-L.; Jeng, U. S.; Lai, Y.-H.; Sun, Y.-S. "Morphology and properties of Nafion membranes prepared by solution casting" Polymer, vol.50, pp.1764-1777, 2009.
    [34] Yeo, R. S. "Dual cohesive energy densities of perfluorosulphonic acid (Nafion) membrane" Polymer, vol.21, pp.432-435, 1980.
    [35] Chu, P. P.; Wu, C.-S.; Liu, P.-C.; Wang, T.-H.; Pan, J.-P. "Proton exchange membrane bearing entangled structure: Sulfonated poly(ether ether ketone)/bismaleimide hyperbranch" Polymer, vol.51, pp.1386-1394, 2010.
    [36] Fu, T.; Zhong, S.; Cui, Z.; Zhao, C.; Shi, Y.; Yu, W.; Na, H.; Xing, W. "Sulfonated poly(ether ether ketone)/epoxy/phenol novolac blend proton-exchange membranes with low methanol permeability" Journal of Applied Polymer Science, vol.111, pp.1335-1343, 2009.
    [37] Zhang, N.; Zhang, G.; Xu, D.; Zhao, C.; Ma, W.; Li, H.; Zhang, Y.; Xu, S.; Jiang, H.; Sun, H.; Na, H. "Cross-linked membranes based on sulfonated poly (ether ether ketone) (SPEEK)/Nafion for direct methanol fuel cells (DMFCs)" International Journal of Hydrogen Energy, vol.36, pp.11025-11033, 2011.
    [38] Li, X.; Liu, C.; Lu, H.; Zhao, C.; Wang, Z.; Xing, W.; Na, H. "Preparation and characterization of sulfonated poly(ether ether ketone ketone) proton exchange membranes for fuel cell application" Journal of Membrane Science, vol.255, pp.149-155, 2005.
    [39] Matsuguchi, M.; Takahashi, H. "Methanol permeability and proton conductivity of a semi-interpenetrating polymer networks (IPNs) membrane composed of Nafion® and cross-linked DVB" Journal of Membrane Science, vol.281, pp.707-715, 2006.
    [40] Pan, H.; Pu, H.; Wan, D.; Jin, M.; Chang, Z. "Proton exchange membranes based on semi-interpenetrating polymer networks of fluorine-containing polyimide and Nafion®" Journal of Power Sources, vol.195, pp.3077-3083, 2010.
    [41] Felice, C.; Ye, S.; Qu, D. "Nafion−Montmorillonite Nanocomposite Membrane for the Effective Reduction of Fuel Crossover" Industrial & Engineering Chemistry Research, vol.49, pp.1514-1519, 2010.
    [42] Song, M.-K.; Park, S.-B.; Kim, Y.-T.; Kim, K.-H.; Min, S.-K.; Rhee, H.-W. "Characterization of polymer-layered silicate nanocomposite membranes for direct methanol fuel cells" Electrochimica Acta, vol.50, pp.639-643, 2004.
    [43] Kim, D. W.; Choi, H.-S.; Lee, C.; Blumstein, A.; Kang, Y. "Investigation on methanol permeability of Nafion modified by self-assembled clay-nanocomposite multilayers" Electrochimica Acta, vol.50, pp.659-662, 2004.
    [44] Choi, Y. S.; Kim, T. K.; Kim, E. A.; Joo, S. H.; Pak, C.; Lee, Y. H.; Chang, H.; Seung, D. "Exfoliated Sulfonated Poly(arylene ether sulfone)–Clay Nanocomposites" Advanced Materials, vol.20, pp.2341-2344, 2008.
    [45] Zhang, H.; Huang, H.; Shen, P. K. "Methanol-blocking Nafion composite membranes fabricated by layer-by-layer self-assembly for direct methanol fuel cells" International Journal of Hydrogen Energy, vol.37, pp.6875-6879, 2012.
    [46] Lin, H.; Zhao, C.; Ma, W.; Li, H.; Na, H. "Low water swelling and high methanol resistant proton exchange membrane fabricated by cross-linking of multilayered polyelectrolyte complexes" Journal of Membrane Science, vol.345, pp.242-248, 2009.
    [47] Cui, Z.; Xing, W.; Liu, C.; Liao, J.; Zhang, H. "Chitosan/heteropolyacid composite membranes for direct methanol fuel cell" Journal of Power Sources, vol.188, pp.24-29, 2009.
    [48]"http://serc.carleton.edu/research_education/geochemsheets/BraggsLaw.html"
    [49] 鄭有舜 " X-光小角度散射在軟物質研究上的應用 " 物理雙月刊, vol.廿六卷二期, 2004.
    [50] Gierke, T. D.; Munn, G. E.; Wilson, F. C. "The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies" Journal of Polymer Science: Polymer Physics Edition, vol.19, pp.1687-1704, 1981.
    [51] Hensley, J. E.; Way, J. D.; Dec, S. F.; Abney, K. D. "The effects of thermal annealing on commercial Nafion® membranes" Journal of Membrane Science, vol.298, pp.190-201, 2007.
    [52] Yang, B.; Manthiram, A. "Comparison of the small angle X-ray scattering study of sulfonated poly(etheretherketone) and Nafion membranes for direct methanol fuel cells" Journal of Power Sources, vol.153, pp.29-35, 2006.
    [53] 吳千舜 " 奈米複合離子交換膜的離子與分子多尺度的動態行為之研究 " 國立中央大學 化學系博士論文, pp.118, 2010.

    QR CODE
    :::