| 研究生: |
周伊珊 Yi-Shan Chou |
|---|---|
| 論文名稱: |
早期古柏帶碰撞演化過程之推證 The indication of early Kuiper Belt collisional evolution |
| 指導教授: |
葉永烜
Wing-Huen Ip |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 天文研究所 Graduate Institute of Astronomy |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 碰撞 、古柏帶 |
| 外文關鍵詞: | Kuiper belt, collisional evolution |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於1950年代,有兩位天文學家古柏(Gerard Kuiper)和艾吉沃斯(Kenneth Edgeworth)分別提及了古柏帶的存在。雖說他們的說法與現今古柏帶的真實位置有所出入,但仍稱得上是首先推測古柏帶的始祖。過了近半個世紀,Jewitt和Luu於1992年使用夏威夷Mauna Kea上2.2公尺的望遠鏡,成功地觀測到歷史上第一顆KBO─1992QB1,首度証實了古柏帶天體的存在。而短短十多年的光陰,這群小天體的數量已累積達一千顆以上。
目前已有許多天文學家致力於研究KBOs的動力環境,且依據KBOs不同的動力性質,我們大致可將KBOs分成三大類:CKBOs、Plutinos和SKBOs。而根據觀測所得的KBO之物理性質,如尺寸分佈、總質量、反照率等,可以幫助我們進一步了解古柏帶天體的演化歷程。於早些時候,一般相信古柏帶完整地記錄了太陽系早期形成的演化訊息,但最近科學家們藉由理論和觀測的結果發現,這個遙遠且看似平靜的邊陲地帶,很可能是一連串不斷碰撞演化過程下的產物。
我們亦可從另一觀點來切入並探討古柏帶的演化此一問題,即古柏帶天體的化學性質─「KBO的表面顏色」。由於有許多因素得以改變古柏帶天體的顏色,如原始組成成分、宇宙輻射射線的作用及碰撞作用,故研究KBOs表面顏色的變化,很可能就是幫助我們解開太陽系形成謎團的一把重要鑰匙。
我們從兩個角度來著手討論「古柏帶碰撞演化」的問題。首先,建立一「古柏帶總質量隨時間變化」的模型,發現當早期KBOs原始總數愈多或遞減愈緩慢時,經過碰撞所存活下來的古柏帶天體,其尺寸也會比較大。接著,運用一簡單的關係式來模擬KBO表面的顏色變化,結果發現各種尺寸的KBO最終的顏色均趨於一致,故我們覺得碰撞對顏色所能造成的變化是很有限的,一定存在著另一個因素會影響顏色的變化。
我們綜合以上兩個結果得出以下的推論:由於早期古柏帶的碰撞十分地猛烈,所以數千公里等級的KBOs是有機會被撞成數百公里的KBOs,又由於大尺寸的KBOs內部有分層的結構,所以早期被撞碎的KBOs可能原本就呈現不同的顏色。故造成KBO顏色多樣化的原因是原始的組成成分而非碰撞作用。如此一來,「KBOs碰撞演化歷程」模型便成功地推論了KBOs表面顏色變化的原因。反過來說,「KBOs表面顏色的變化」成了「早期KBOs碰撞演化歷程」的最佳見証人。
[1] Baratta, G. A.; Brunetto, R.; Leto, G.; Palumbo, M. E.; Spinella, F.; Strazzulla, G. 2004, Mem. S.A.It. Suppl., 5, 33-36, Ion irradiation of ices relevant to astrophysics
[2] Chiang, E. I. & Brown, M. E. 1999, AJ, 118, 1411-1422, Keck Pencil-Beam Survey for Faint Kuiper Belt Objects
[3] Davis, D. R.; Chapman, C. R.; Weidenschilling, S. J.; Greenberg, R. 1985, ICARUS, 63, 30-53, Collisional history of asteroids: Evidence from Vesta and the Hirayama families
[4] Davis, D. R.; Weidenschilling, S. J.; Farinella, P.; Paolicchi, P.; Binzel, R. P. 1989, In Asteroids II, 805-826, Asteroid collisional history - Effects on sizes and spins
[5] Davis, D. R. and Farinella, P. 1997, ICARUS, 135, 50-60, Collisional Evolution of Edgeworth-Kuiper Belt Objects
[6] De Sanctis, M. C.; Capria, M. T.; Coradini, A. 2001, AJ, 121, 2792-2799, Thermal Evolution and Differentiation of Edgeworth-Kuiper Belt Objects
[7] Doressoundiram, A.; Peixinho, N.; de Bergh, C.; Fornasier, S.; Thébault, P.; Barucci, M. A.; Veillet, C. 2002, AJ, 124, 2279-2296, The Color Distribution in the Edgeworth-Kuiper Belt
[8] Duncan, M. J. & Levison, H.F. & Budd, S. M. 1995, AJ, 110, 3073-3081, The Dynamical Structure of the Kuiper Belt
[9] Farinella, P. & Davis, D. 1996, SCIENCE, 273, 938-941, Short-period comets: Primordial bodies or collisional fragments?
[10] Fernández, J. A. & Ip, W. H. 1984, ICARUS, 58, 109-120, Some dynamical aspects of the accretion of Uranus and Neptune - The exchange of orbital angular momentum with planetesimals
[11] Fernández, J. A.; Brunini, A. 2000, ICARUS, 145, 580-590, The buildup of a tightly bound comet cloud around an early Sun immersed in a dense Galactic environment: Numerical experiments
[12] Fernández, Y. R.; Jewitt, D. C.; Sheppard, S. S. 2002, AJ, 123, 1050-1055, Thermal Properties of Centaurs Asbolus and Chiron
[13] Giblin, I.; Davis, D. R.; Ryan, E. V. 2004, ICARUS, 171, 487-505, On the collisional disruption of porous icy targets simulating Kuiper belt objects
[14] Gladman, B.; Kavelaars, J. J.; Nicholson, P. D.; Loredo, T. J.; Burns, J. A. 1998, AJ, 116, 2042-2054, Pencil-Beam Surveys for Faint Trans-Neptunian Objects
[15] Gladman, Brett; Kavelaars, J. J.; Petit, Jean-Marc; Morbidelli, Alessandro; Holman, Matthew J.; Loredo, T. 2001, AJ, 122, 1051-1066, The Structure of the Kuiper Belt: Size Distribution and Radial Extent
[16] Gladman, B. J. 2005, SCIENCE, 307, 71-75, Review: The Kuiper Belt and the Solar System’s Comet Disk
[17] Hahn, J. M. & Malhotra, R. 1999, AJ, 117, 3041-3053, Orbital Evolution of Planets Embedded in a Planetesimal Disk
[18] Holman, M. & Wisdom, J. 1993, AJ, 105, 1987-1999, Dynamical stability in the outer solar system and the delivery of short period comets
[19] Housen, K. R. 1983, LPI, 333-334, Crater Ejecta Scaling Laws
[20] Housen, K. R.; Schmidt, R. M.; Holsapple, K. A. 1991, ICARUS, 94, 180-190 , Laboratory simulations of large scale fragmentation events
[21] Ida, S. & Larwood, J. & Burkert, A. 2000, APJ, 528, 351-356, Evidence for Early Stellar Encounters in the Orbital Distribution of Edgeworth-Kuiper Belt Objects
[22] Jewitt, D. C. & Luu, J. X. 1993, NATURE, 362, 730-732, Discovery of the candidate Kuiper belt object 1992 QB1
[23] Jewitt, D. C.; Luu, J.X.; Chen, J. 1996, AJ, 112, 1225-1332, The Mauna Kea-Cerro-Tololo (MKCT) Kuiper Belt and Centaur Survey
[24] Jewitt, D. C. & Luu, J.X. 1996, AJ, 112, 2310-2318, Color Diversity Among the Centaurs and Kuiper Belt Objects
[25] Jewitt, D.C.; Luu, J.X.; Trujillo, C.A. 1998, AJ, 115, 2125-2135, Large Kuiper Belt Objects: The Mauna Kea 8K CCD Survey
[26] Jewitt, D. C. & Aussel, H. & Evans, A. 2001, NATURE, 411, 446-447, The size and albedo of the Kuiper-belt object (20000) Varuna
[27] Jewitt, D. C. & Luu, J. X. 2001, AJ, 122, 2099-2114, Colors and Spectra of Kuiper Belt Objects
[28] Johnson, R. E.; Cooper, J. F.; Lanzerotti, L. J.; Strazzulla, G. 1987, A&A, 187, 889-892, Radiation Formation of a Non-Volatile Comet Crust
[29] Kenyon, S. J.; Brown, D. I.; Tout, C. A.; Berlind, P. 1998, AJ, 115, 2136-2160, Optical Spectroscopy of Embedded Young Stars in the Taurus-Auriga Molecular Cloud
[30] Lange, M. A.; Ahrens, T. J. 1987, ICARUS, 69, 506-518, Impact experiments in low-temperature ice
[31] Levison, H. F. & Duncan, M. J. 1993, APJ, 406, L35-L38, The gravitational sculpting of the Kuiper belt
[32] Luu, J. X.; Jewitt, D. C. 1998, APJ, 502, L91-L94, Deep Imaging of the Kuiper Belt with the Keck 10 Meter Telescope
[33] Malhotra, R. 1993, NATURE, 365, 819, The Origin of Pluto''s Peculiar Orbit
[34] Malhotra, R. 1995, AJ, 110, 420-429, The Origin of Pluto''s Orbit: Implications for the Solar System Beyond Neptune
[35] Morbidelli, A., Thomas, F., Moons, M. 1995, ICARUS, 118, 322–340, The Resonant Structure of the Kuiper Belt and the Dynamics of the First Five Trans-Neptunian Objects
[36] Morbidelli, A. & Valsecchi, G. B. 1997, Icarus, 128, 464–468, Neptune Scattered Planetesimals Could Have Sculpted the Primordial Edgeworth–Kuiper Belt
[37] Moroz, L. V.; Arnold, G.; Korochantsev, A. V.; Wasch, R. 1998, ICARUS, 134, 253-268, Natural Solid Bitumens as Possible Analogs for Cometary and Asteroid Organics
[38] Öpik, E. J. 1951, Proc. R. Irish Acad. Sect. A, 54, 165-199, Collision probability with the planets and the distribution of planetary matter
[39] Peixinho, N.; Boehnhardt, H.; Belskaya, I.; Doressoundiram, A.; Barucci, M. A.; Delsanti, A. 2004, ICARUS, 170, 153-166, ESO large program on Centaurs and TNOs: visible colors-final results
[40] Stern, S. A. 1996, AJ, 112, 1203-1211, On the Collisional Environment, Accretion Time Scales, and Architecture of the Massive, Primordial Kuiper Belt
[41] Stern, S. A. & Colwell J. E. 1997, AJ, 114, 841-849, The Heliocentric Evolution of Key Species in the Distantly-Active Comet C/1995 O1 (Hale-Bopp)
[42] Strazzulla, G.; Baratta, G. A.; Johnson, R. E.; Donn, B. 1991, Icarus, 91, 101-104, Primordial comet mantle: Irradiation production of a stable organic crust
[43] Tholen, D. & Buie, M. 1997, In Pluto and Charon, ed. SA Stern, DJ Tholen, Tucson: Univ. Ariz. Press, 193–220, Bulk properties of Pluto and Charon
[44] Trujillo, C.; Jewitt, D.; Luu, J.; Chen, J.; Hergenrother, C. W.; Brown, W. R.; Offutt, W.; Marsden, B. G. 1997, MPEC, 1996 TL66
[45] Trujillo, C. A.; Jewitt, D. C.; Luu, J. X. 2001, AJ, 122, 457-473, Properties of the Trans-Neptunian Belt: Statistics from the Canada-France-Hawaii Telescope Survey
[46] Trujillo, C. A. & Brown, M. E. 2001, APJ, 554, L95-L98, The Radial Distribution of the Kuiper Belt
[47] Solarviews.com http://www.solarviews.com/ss.html
[48] Astronomy Notes http://www.astronomynotes.com
[49] Jewitt, D. C. http://www.ifa.hawaii.edu/faculty/jewitt/kb.html