| 研究生: |
張欣旻 Sin-Min Jhang |
|---|---|
| 論文名稱: |
橋梁管理資訊系統智慧型資料偵錯工具之建立 Establishment of Error Data Detection Mechanisms for Bridge Management System |
| 指導教授: |
姚乃嘉
Nie-Jia Yau 廖先格 Hsien-Ke Liao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木系營建管理碩士班 Master's Program in Construction Management, Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 橋梁管理系統 、智慧資料偵錯 、資料探勘 、關聯性分析 |
| 外文關鍵詞: | Bridge Management System, Intelligent Error Data Detection, Data Mining, Correlation Analysis |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「臺灣地區橋梁管理資訊系統」目前系統管理問題,主要為使用者資料填寫不全及資料填寫錯誤,若系統中擁有一套資料偵錯並防止使用者填寫錯誤之機制,不但可提升系統資料之可信度,也能提升後續進行橋梁維修經費之管理效能。因此,本研究提出一套偵錯機制,將系統中之基本資料以及檢測資料中明顯錯誤挑除,並進而防止未來可能之填寫錯誤,以提升系統資料之正確性。
本研究首先將基本資料的錯誤態樣,分為基本資料誤填錯誤以及欄位資料相衝突兩類;透過專家訪談以及資料蒐集後,統整各資料表欄位之合理區間或給予限制條件,篩選出錯誤之基本資料並進而避免未來填寫資料時發生誤填之情形。在檢測資料偵錯方面中,本研究先將橋梁做初步分類,利用集群分析法找出有相似條件之橋梁,並分析同一群組中之橋梁可能的劣化情形,並藉由劣化構件間之關聯性,分析各構件可能之D值,以建立一套判斷填寫錯誤之參考基準。
經實際測試後,本研究所建立之資料偵錯機制確實可篩選出系統中錯誤之基本資料以及檢測資料,可驗證本研究成果對於提升系統資料之正確性具有相當之成效。
The major management problem of the Taiwan Bridge Management System (TBMS) is existing of incomplete or error data input by the users. A set of error data detection mechanisms help both in increasing reliability of system data and in effectiveness of bridge maintenance. Therefore, this research aims at establishing such error data detection mechanisms to screen out for correction obvious errors exist in the inventory and in the inspection databases of the TBMS. Furthermore, error proof data input mechanisms are also generated in this research to prevent inputting of incorrect data in the future.
For the inventory database, this study categorizes error data patterns of basic data into two types; wrong input of data and data conflicts between fields. After expert interviews were conducted and typical values for bridge attributes were collected, reasonable intervals of various fields and valid relationships among data fields were summarized to become rules for finding error data in the inventory database. In the aspect of detecting possible inspection data, this study classifies bridges into several types first and then uses a cluster analysis method to group bridges with similar characters. In a group, possible D values for various components are analyzed from which components with possible wrong D inspection values can be found.
Several tests were performed in the TBMS using the mechanism generated by this research; typos and unreasonable data both in the bridge inventory and in the bridge inspection database were actually found and corrected accordingly. These tests prove that results of this research are meaningful and useful in maintaining the TBMS.
1. 交通部,公路鋼筋混凝土結構橋梁之檢測及補強規範,交通部,臺北市,2014。
2. 楊振翰,「臺灣地區橋梁維護管理現況與未來發展策略之研究」,國立中央大學,碩士論文,2004。
3. 李家政,「橋梁維修資訊管理模組架構最適化之研究」,國立中央大學,碩士論文,2007。
4. 陳屏甫,「預防性維護下橋梁構件劣化分群與關聯規則之研究」,國立中央大學,博士論文,2013。
5. 交通部,交通技術標準規範公路類公路工程部 : 公路橋梁設計規範,交通部,臺北市,2009。
6. 交通部,交通技術標準規範公路類公路工程部公路橋梁耐震設計規範,交通部,臺北市,2008。
7. 王翔,「序列樣式於DER&U檢測資料之應用研究-以橋梁下部結構損壞為探討對象」,國立臺灣科技大學,碩士論文,2010。
8. Galvan-Nunez, S. and N. Attoh-Okine,“Hybrid Particle Swarm Optimization and K-Means Analysis for Bridge Clustering Based on National Bridge Inventory Data”ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering,p. F4016001, 2017.
9. Hung, C.-C. and L. Wan,“Hybridization of particle swarm optimization with the K-Means algorithm for image classification”IEEE Symposium on Computational Intelligence for Image Processing ,2009.
10. 賴明皇,「台灣地區公路橋梁特性統計分析之研究」,國立中央大學,碩士論文,2003。
11. MacQueen,J.,“Some methods for classification and analysis of multivariate observations”,Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics,1967.
12. Jain, A.K.,“Data clustering: 50 years beyond K-means”, Pattern Recognition Letters,p. 651-666,2010.
13. Meil, M.,“The uniqueness of a good optimum for K-means”,Proceedings of the 23rd international conference on Machine learning, ACM, p. 625-632, 2006.
14. Kennedy;, J. and R. Eberhart,“Particle swarm optimization”, Proceedings of IEEE International Conference on Neural Networks, pp. 1942-1948,1995.
15. Bailey, J. E. and Pearson, S. W., “Development of a Tool for Measuring and Analyzing Computer User Satisfaction,” Management Science, Vol. 29,pp. 530-545,1983.
16. 李城忠,應用統計學SPSS完全攻略,初版,新文京開發,台北市,2008。
17. 榮泰生,SPSS與研究方法,第三版,五南圖書,台北市,2013。
18. John W. Foreman,胡為君譯,資料智慧化:利用資料科學,將資訊化為創見,初版,碁峰資訊,台北市,2016。
19. 劉凡平,大數據時代的演算法:機器學習、人工智慧及其典型實例,初版,松崗資產管理,台北市,2017。
20. 吳吉峰,「系統識別與類神經網路於碧潭橋破壞檢測之應用」,國立台灣大學,碩士論文,2000。
21. 李維平、王雅賢、江正文,「粒子群最佳化演算法改良之研究」,科學與工程技術期刊, 4(2), 51-62,2008。
22. 李綸桓,「類神經網路橋梁結構延伸樁桿件之設計與評估模式之建立」,國立交通 大學,碩士論文,2011。
23. 黃冠智,「模糊迴歸模式之建立及其應用─以橋面版劣化預測為例」,(碩士), 國立高雄應用科技大學,碩士論文,2006。
24. 許文政,「橋梁生命週期成本評估-構件劣化預測模式之研究」,國立中央大學, 碩士論文,2005。
25. Nasrollahi, M., & Washer, G.,Estimating Inspection Intervals for Bridges Based on Statistical Analysis of National Bridge Inventory Data. Journal of Bridge Engineering, 20(9), 04014104. doi: 10.1061/(ASCE)BE.1943-5592.0000710,2015.
26. Peter E. D. Loveand Pauline Teo, “Statistical analysis of injury and nonconformance frequencies in construction: negative binomial regression model”, American Society of Civil Engineers. DOI: 10.1061/(ASCE)CO.1943-7862.0001326,2017.
27. 鄭明淵、邱永芳、吳育偉、歐昱辰、邱建國、廖國偉、范鴻達,「創新人工智慧學習模式預測震後橋梁耐震能力與通行失敗機率之研究-以臺灣橋梁為例」,中國土木水利工程學刊,25(3),193-209,2013。
28. 交通部運輸研究所,「第二代臺灣地區橋梁管理資訊系統建置規劃(3/3)成果報告」,2015。
29. 臺灣地區敖梁管理資訊系統,Available from:http://210.65.138.122/bms2/。
30. 第二代臺灣地區公路橋梁管理資訊系統,Available from:
http://bms2.iot.gov.tw/bms3/public/public/login/。