| 研究生: |
陳治佑 Chin-Yu Chen |
|---|---|
| 論文名稱: |
氮化硼表面的高反射金屬電極 Highly reflective metal contacts on boron nitride |
| 指導教授: |
賴昆佑
Kun-Yu Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 氮化硼 、金屬電極 、接觸電阻 、鎂摻雜 、退火 |
| 外文關鍵詞: | BN, metal contacts, Contact resistance, Mg-doped, annealing |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
深紫外發光二極體(deep ultraviolet light-emitting diodes, DUV LEDs, 波長 ≤ 290 nm)需要高穿透、高導電的P型半導體,才能發出更多的DUV光子。目前,大多數的研究團隊都以氮化鎵(GaN)作為DUV LEDs的P型電極接觸層,但P型氮化鎵的能隙(3.4 eV)太小,會吸收深紫外光,導致LED的外部量子效率(external quantum efficiency, EQE)很難超過10%。為了解決這個問題,我們嘗試以氮化硼(boron nitride, BN)來取代氮化鎵。氮化硼具備高能隙(~ 5.9 eV)與低電洞活化能(30-300 meV),有潛力展現高穿透、高導電的光電特性,值得應用在DUV LED。
本研究中,我們在BN磊晶層的表面,以不同的製程條件形成含鋁(Al)的金屬電極,希望能取代傳統常用的鎳/金(Ni/Au)電極,希望能降低BN表面的接觸電阻、並提升金屬/BN介面的反射率。若能達到高導電、高反射的金屬/BN介面,就能將之應用在覆晶型(flip-chip) 的DUV LED。我們發現,以Pt/Al/Ti/Au製作BN表面的電極,並以700 °C氮氣退火1分鐘,能將280 nm波段的反射率由25% (Ni/Au電極),提升至44%,並維持相同的接觸電阻。
Deep ultraviolet light-emitting diodes (DUV LEDs, λ ≤ 290 nm) require high-transparent and high-conductive p-type semiconductor to produce sufficient photons. GaN is currently the most used p-type material for DUV LEDs because of its mature growth/fabrication process. However, since the band gap of GaN is only 3.4 eV, the severe light absorption in the p-type region usually leads to the external quantum efficiencies (EQEs) below 10 % of the device. To address the issue, we adopt boron nitride (BN) as the alternative. The large band gap (~ 5.9 eV) and small hole activation energy (30-300 meV) of BN make it a promising candidate for high transparent and high conductive p-type material in DUV LEDs.
In this study, we propose an Al-based metal contact on BN, aiming to replace the conventional Ni/Au contact. The Al layer is employed to increase the reflectance at the metal/BN interface, which is suitable for flip-chip devices. It is found that Pt/Al/Ti/Au, annealed at 700 °C in N2 for 1 min, can increase the reflectance at 280 nm from 25 % (by Ni/Au) to 44 %, without sacrificing the contact resistance.
1. The electromagnetic spectrum, Available at:
https://bestlight.io/blogs/news/92100353-what-are-ultraviolet-lights-good-for
2. Application of UVA,UVB,UVC, Available at:
https://www.idealab.rocks/en_US/wettbewerbe/leds-clean-our-water/
3. D. Liu, et al. 226nm AlGaN/AlN UV LEDs using p-type Si for hole injection and UV reflection. Appl. Phys. Lett. 113, 011111 (2018).
4. H. X. Jiang & J. Y. Lin. Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond. Sci. Technol. 29, 084003 (2014).
5. Noritoshi, M & Hideki, H. Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer. Phys. Status Solidi C. 10, 11 (2013).
6. David Arto Laleyan, et al. AlN/h-BN Heterostructures for Mg Dopant-Free Deep Ultraviolet Photonics. Nano Lett. 17, 3738−3743 (2017).
7. E-gun&Thermal, Available at: https://in.ncu.edu.tw/~osc/3_1_2.htm
8. Sheet resistance, Available at:
https://en.wikipedia.org/wiki/Sheet_resistance
9. Hall measurement, Available at:
http://ezphysics.nchu.edu.tw/prophys/basicexp/expnote/hall/hall_97Feb.pdf
10. H. K. Kim, et al. Low-resistance Pt/Pd/Au ohmic contacts to p-type AlGaN. Applied Physics Letters. 84, 1710 (2004).
11. L. C. Chen, et al. Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN. Journal of Applied Physics. 86, 3826 (1999).
12. Y. X. Zhu, et al. Effect of different ohmic contact pattern on GaN HEMT electrical properties. Acta Phys. Sin. 63, 11 (2014).
13. X. J. Li, et al. Influence of different annealing temperature and atmosphere on the Ni/Au Ohmic contact to p-GaN. Acta Phys. Sin. 62, 20 (2013).
14. J. K. Ho, et al. Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films. Journal of Applied Physics. 86, 4491 (1999).
15. J. K. Sheu, et al. Lin The effect of thermal annealing on the Ni/Au contact of p- type GaN. Journal of Applied Physics 83, 3172 (1998).
16. H. K. Kim, et al. Low-resistance Pt/Pd/Au ohmic contacts to p-type AlGaN. Applied Physics Letters. 84, 1710 (2004).
17. David Arto Laleyan, et al. AlN/h-BN Heterostructures for Mg Dopant-Free Deep Ultraviolet Photonics. Nano Lett. 17, 3738–3743(2017).
18. Allen J. Bard, et al. The concept of Fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J. Am. Chem. 102 (11), 3671-3677(1980).