| 研究生: |
林伯峻 po-chun Lin |
|---|---|
| 論文名稱: |
追日偏差量測技術比較與聚光太陽光電系統之實測 Comparison of Techniques of Tracking Offset Angle and Field Tests of CPV System |
| 指導教授: | 吳俊諆 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | PSD 、CCD 、Webcam 、追日偏差角量測技術 、影像分離法 、閉迴路追日控制系統 |
| 外文關鍵詞: | PSD, CCD, Webcam, Measurement technique of offset for sun-tracking, Image separation method, Closed-loop sun-tracking system |
| 相關次數: | 點閱:26 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文開發Webcam追日偏差角度量測技術,並針對中壢地區的聚光型太陽光電(CPV)系統進行實地測試。此外亦比較兩種機械視覺技術(CCD與Webcam)於不同日照條件下的不同演算法(三種影像分離法再計算太陽影像質心),結果顯示CCD與Webcam相機拍攝的太陽影像利用影像處理的Canny法能於不同日照條件有效計算太陽影像質心位置,即可定義追日偏差角。
文中使用PSD (position sensitive device)和CCD二種追日偏差角量測技術來驗證Webcam方法的可行性,並實地測試中壢地區的兩個不同發電容量的CPV系統(閉迴路追日控制系統)。結果顯示這三種方法量測的偏差角度分布具相同趨勢, 12天量測顯示兩系統平均追日系統偏差角度約0.2o,多雲條件下平均偏差角度會比晴天下高出0.055o。1.5 kW CPV系統的最終發電量(Yf)為3.38 kWh/kW、性能比(PR)為52.3%。至於222 W CPV系統的Yf為2.66 kWh/kW、PR為43%,,造成此差異可能是受聚光元件老化影響與模組散熱不良影響。
綜合這三種追日量測方法的優缺點如下:PSD儀器雖具高採樣頻率(5 ms),但易低日照影響判別太陽位置;CCD和Webcam儀器可改善雲遮條件下拍攝的太陽影像,但需配合合適影像處理演算法;使用 Webcam相機比PSD和CCD儀器的成本低,但在低日照條件拍攝的太陽影像品質略低CCD相機,但考量其成本低廉,對追日量測應用具有相當實用價值。
This thesis developed a technique for measuring the offset of sun-tracking based on Webcam and tested the performance of concentrating photovoltaic system (CPV) in Jhongli area. For comparison, two devices (CCD and Webcam) with three image-separation methods (Canny, Sobel and clustering thresholding) were analyzed to find the centroid of the sun image. The results showed that using the Canny method can effectively identify the image centroid of sun image in wide range of insolation levels, thus the offset of sun-tracking can be obtained.
Both measurement techniques of sun-tracking offset based on PSD (position sensitive device) and CCD were adopted to validate the accuracy of Webcam’s approach. In addition, two different CPV systems (222 W and 1.5 kW) were tested in Jhongli area. The results showed that measurements of offset using Webcam, CCD and PSD have the similar probability distributions. During accumulated period of 12 days, the results showed that average offset-angle of the two CPV systems were about 0.2o, and in cloudy conditions the average offset-angle was 0.055o higher than that of the sunny conditions. The larger CPV system (1.5 kW) generated a final electricity production (Yf) of 3.38 kWh/kW and performance ratio (PR) of 52.3%. Meanwhile, Yf was 2.66 kWh/kW and PR was 43% for another smaller CPV system (222 W). The main reason of such large difference may due to aging of concentrating optical lens and ineffective heat dissipation of module.
Summary of the pro and con of these three measurement techniques of sun-tracking are as follows. Although the PSD apparatus has very high sampling rate (5 ms), it is easy affected by low irradiation condition, which cannot effectively identify the sun position. CCD and Webcam devices can improve images quality in low irradiation, yet they require proper algorithms of image-processing. Webcam is much cheaper than PSD or CCD, yet its images captured in low irradiations are slightly lower than that of CCD. Considering it low-cost advantage, it is a very practical technique in sun-tracking application.
林武君 (2012),影像視覺追日偏差量測技術開發與追日太陽光電系統之實測,國立中央大學能源工程研究所碩士論文。
行政院原子能委員會 (2011),太陽光發電影像追蹤技術研發,委託研究報告。
周建仁 (2011),太陽電池短路電流法追日控制器之研發,國立中央大學機械工程研究所碩士論文。
陳麒夆 (2010),追日偏差量測技術開發與聚光太陽光電系統之實測,國立中央大學能源工程研究所碩士論文。
劉智維 (2010),以指向誤差修正技術應用在追日精度改進,國立中央大學能源工程研究所碩士論文。
Abdallah, S., Nijmeh, S. (2004) “Two axes sun tracking system with PLC control,” Energy Conversion and Management 45:1931–1939.
Abdallah, S., Badran, O.O. (2008) “Sun tracking system for productivity enhancement of solar still,” Desalination 220:669–676.
Arturo, M.M., Alejandro, G.P (2010) “High–precision solar tracking system,” Proceedings of the World Congress on Engineering Vol. II.
BASLER (2011) “Scout users_manual,” BASLER www.baslerweb.com/.
Chinnery, D.N.W. (1981) “Solar heating in South Africa,” CSIR-Research Report 248.
Canny, J. (1986) “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679-698.
Duffie, J.A., Beckman, W.A. (2006) Solar Engineering of Thermal Processes, 4th Ed. New York: John Wiley & Sons.
Davis, M., Lawler, J., Coyle J., Reich, A., Williams, T. (2008) “Machine vision as a method for characterizing solar tracker performance,” GreenMountain Engineering, LLC, 33rd IEEE Photovoltaic Specialists Conference.
Green. M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D. (2013) “Solar cell efficiency tables (version 41),” Prog. Photovolt: Res. 21:1–11
Davis, M., Stafford, B., Martínez M., Sánchez D. (2009) “Tracker accuracy: Field experience and correlation with meteorological conditions,” 24th EUPVSEC, Hamburg, Germany.
Donato, V., Stefano, B., Massimiliano O., Marco S., Antonio P., Giuliano M. (2010) “Measurement of sun-tracking accuracy and solar irradiance through multispectral imaging,” Optics for Solar Energy (OSE), Tucson, AZ, Solar Concentrator Characterization (STuA).
Heywood, H. (1971) “Operational experience with solar water heating,” J. the Institution of Heating and Ventilation Engineers 39:63-69.
Kurtz, S. (2009) “Opportunities and challenges for development of a mature concentrating photovoltaic power industry,” NREL/TP-520-43208.
Koussa M., Cheknane A., Hadji S., Haddadi M., Noureddine S. (2011) “Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions,” Applied Energy 88:1756–1771.
Luque, A.L., Sala, G., Luque-Heredia, I. (2006) “Photovoltaic concentration at the onset of its commercial deployment,” Prog. Photovolt: Res. Appl. 14:413-428.
Luque-Heredia, I., Moreno, J.M., Magalhaes, P.H., Cervantes, R., Quemere, G., Laurent, O. (2007) “Inspira’s CPV sun tracking,” Concentrator Photovoltaics, Chapter 11, Springer-Verlag.
Neville RC. (1978) “Solar energy collector orientation and tracking mode,” Solar Energy 20:7–11.
Nijegorodov, N., Devan, K.R.S., Jain P.K., Carlsson, S. (1994) “Atmospheric transmittance models and an analytical method to predict the optimum slope of an absorber plate, variously orientated at any latitude,” Renew Energy 4:529–43.
National Instruments (2007) “NI vision concepts manual,” National Instruments.
NREL (2013) “Best research cell efficiencies,” http://www.nrel.gov/ncpv/, accessed on June 10, 2013.
Reda, I., Andreas, A. (2008) “Solar position algorithm for solar radiation applications,” NREL/TP-560-34302.
Scripps CO2 Program http://scrippsco2.ucsd.edu/, accessed on June 10, 2013.
Sefa, I., Demirtas, M., Colak, I. (2009) “Application of one-axis sun tracking system,” Energy Conversion and Management 50:2709-2718.
Sobel, I.E. (1970) “Camera models and machine perception,” PhD dissertations, Stanford University, Palo Alto, Calif.
Wojtczuk S., Chiu P., Zhang X., Pulver D., Harris C., Siskavich B. (2011) “42% 500X bi-facial growth concentrator Cells,” CPV-7, Las Vegas, USA, AIP Conf. Proc.
Yeh, H.Y., Lee, C. D., Huang, H. C. (2013) “The development of image-based solar tracking system,” CPV-9, Miyazaki, Japan, AIP Conf. Proc.