跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林育賢
Yu-Hsien Lin
論文名稱: 模擬被clathrin蛋白質覆蓋的板塊狀胞吞作用
Modeling Endocytosis of a Clathrin-Coated Plaque
指導教授: 陳宣毅
Hsuan-Yi Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 生物物理研究所
Graduate Institute of Biophysics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 78
中文關鍵詞: 包吞作用板塊肌動蛋白
外文關鍵詞: endocytosis, plaque, actin
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在胞吞作用的初期,clathrin 蛋白質會在細胞膜上聚集並形成晶格,這個晶格會離開細胞膜並形成一個運輸囊泡,藉此細胞外的物質以及被clathrin 晶格覆蓋的細胞膜就會被運輸進細胞內。clathrin 晶格有兩種截然不同的形狀,一種是彎曲的"坑",另一種是平板狀的"板塊"。實驗上發現,板塊只會出現在細胞膜跟基板交界的內面,它們會在基板上停留幾分鐘然後進入細胞,除此之外,它們生長以及離開基板的過程都需要肌動蛋白網絡。根據這些結果我們建立一個理論模型。在此模型中,一旦板塊離開基底,肌動蛋白網絡的能量就會下降。我們發現,當肌動蛋白網絡長得大,系統的自由能就會隨著板塊的高度上升而單調下降,被肌動蛋白網絡擠壓的板塊就會被抬離基底。我們也發現,相較於小的板塊,大的板塊在基板上停留的時間比較久。


    In the early stage of clathrin mediated endocytosis, clathrin proteins aggregate and form a lattice on the cell membrane, which then pinches off and becomes a traffic vesicle. In this way, extracellular materials and an area of membrane are delivered into the cell. There are two distinct shapes of clathrin lattices, one is curved ``coated pit", the other one is flat ``coated plaque''. Experimental works indicate that a clathrin plaque only grows on the ventral membrane of a cell which is adhered to the substrate. The plaque-coated membrane stays on the substrate for several minutes before being internalized. The growth of the actin network around a plaque is also essential for the formation and internalization of the plaque. From these fact we build a model in which the release of the elastic free energy of the growing actin network lead to the detachment of the clathrin plaque from the substrate. We find that a plaque is compressed by the growing actin network and tends to internalize when the growing actin network reaches a critical size. We also find that a large plaque is relatively stable and live longer than a small plaque.

    1 Introduction 1 1.1 Pits, Plaques and Clathrin-Mediated Endocytosis . . . . . . . 1 1.2 Experimental Works on Clathrin Plaques . . . . . . . . . . . . 5 2 Model 12 2.1 Free Energy of the System . . . . . . . . . . . . . . . . . . . . 15 2.2 The Elasticity of the Actin Network . . . . . . . . . . . . . . . 16 2.2.1 The Elastic Moduli of the Two-Dimensional Actin Network 2.2.2 Stress-Strain Relation in the Cylindrical Coordinates 2.2.3 Strains of the Actin Network . . . . . . . . . . . . . . . 22 2.2.4 Stress in the Actin Network . . . . . . . . . . . . . . . 24 2.3 The Growth of the Actin Network . . . . . . . . . . . . . . . . 24 2.4 Adhesion Energy . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Result 33 3.1 The Adhesion Energy . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 The Free Energy Landscape . . . . . . . . . . . . . . . . . . . 35 3.3 Treadmilling State of the Actin Network . . . . . . . . . . . . 36 3.4 The Phase Diagrams . . . . . . . . . . . . . . . . . . . . . . . 40 3.5 Lifetime of a Mature Plaque . . . . . . . . . . . . . . . . . . . 41 4 Conclusion 48 A Strain Tensors in the Cylindrical Coordinates 53 A.1 Two Dimensional Strain Tensors . . . . . . . . . . . . . . . . . 53 A.2 Strain Tensors of a Bent Plate . . . . . . . . . . . . . . . . . . 55 B The Elastic Moduli in Two Dimensions 58

    [1] B. Alberts, A. Johnson, M. Raff, K. Roberts and P.Walter, Molecular
    Biology of the Cell, 4th edition. (Garland Science, New York, 2002)
    [2] J. Heuser, J. Cell Biol., 84(3), 560 (1980).
    [3] G. D. Vitaliano1, F. Vitaliano, J. D. Rios, P. F. Renshaw, M. H.
    Teicher, PLoS One, 7(5), e35821 (2012).
    [4] P. Maupin and T. D. Pollard, J. Cell Biol., 96, 51 (1983).
    [5] T. Akisaka, H. Yoshida, R. Suzuki, K. Shimizu and K. Takama, J.
    Electron Microsc, 52, 535 (2003).
    [6] A. Fotin, Y. Cheng, P. Sliz, N. Grigorieff, S. C. Harrison, T. Kirchhausen,
    T. Walz, Nature, 432, 573 (2004).
    [7] S. Saffarian, E. Cocucci, T. Kirchhausen, PLoS Biol, 7(9), e1000191
    (2009).
    [8] L. M. Traub, PLoS Biol, 7(9), e1000192 (2009).
    [9] S. Mayor, R. E. Pagano, Nat. Rev. Mol. Cell Biol., 8, 603 (2007).
    [10] M. Ehrlich, W. Boll, A. van Oijen, R. Hariharan, K. Chandran, M.
    L. Nibert and T. Kirchhausen, Cell 118, 591 (2004).
    [11] Helfrich, Z. Naturforsch., C, 28, 693 (1973).
    [12] D. Boal, Mechanics of the Cell, 1st edition. (Cambridge U. P., United
    Kingdom, 2001).
    [13] R. Phillips, J. Kondev and J. Theriot, Physical Biology of the Cell,
    1st edition. (Garland Science, New York, 2008).
    [14] T. M. Svitkina and G. G. Borisy, J. Cell Biol., 145, 1009 (1999).
    [15] H. Kojima, A. Ishijima,and T. Yanagida, PNAS, 91, 12962 (1994).
    [16] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd edition
    (Butterworth-Heinemann, 1986).
    [17] R. W. Ogden, Non-Linear Elastic Deformations, (Dover Publications,
    1997).
    [18] Y. F. Dafalias, D. E. Panayotounakos, Z. Pitouras, Int. J. Solids
    Struct., 45, 4629 (2008) )
    [19] M. J. Footer, J. W. J. Kerssemakers, J. A. Theriot and M. Dogterom,
    PNAS, 104, 2181 (2007).
    [20] K. John, P. Peyla, K. Kassner, J. Prost, and C. Misbah, Phys. Rev.
    Lett., 100, 068101 (2008).
    [21] H.-J. Lin, H.-Y. Chen, Y.-J. Sheng, and H.-K. Tsao, Phys. Rev. E,
    81, 061908 (2010).
    [22] A. L. Garcia, Numerical Methods for Physics, 2nd edition. (Prentice
    Hall, Englewood Cliffs NJ, 2000).

    QR CODE
    :::