跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柯青煒
Ching-Wei Ko
論文名稱: 五苯荑醌之官能化反應與新型五苯荑衍生物之合成
Pentiptycene Chemistry: New Pentiptycene Building Blocks Derived from Pentiptycene Quinones
指導教授: 楊吉水
Jye-Shane Yang
侯敦仁
Duen-Ren Hou
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 94
語文別: 中文
論文頁數: 160
中文關鍵詞: 五苯荑衍生物合成
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 荑分子具有三維空間性質且結構剛硬,研究發現這類分子具有多樣的應用性,例如三苯荑或五苯荑在分子的建構上已被廣泛的應用,這類型分子不論是在基礎的研究或是實際的應用都有一定的重要性,目前已經有很多合成荑分子的相關報導,但由於荑分子具有很高的對稱性質,因此要對於荑分子苯環進行高區域選擇性反應及精確的化學計量控制是較為困難。儘管在近幾年來對於荑醌分子的合成已經有顯著的發展,但將荑醌分子更進一步的官能化卻幾乎沒有什麼發展,為了促進五苯荑分子與荑分子化學一樣能有更廣泛的應用,因此需要研發能簡單合成新型荑分子的方法。本篇論文的目標為合成不同的五苯荑官能基,首先利用五苯荑醌為起始物,進行一系列中心苯環官能化反應,反應過程中利用去胺基反應、鹵化反應、烷化反應、氰化反應以及還原反應來合成我們的目標物,其中一邊的取代基包括了胺基、重氮鹽基、硝基、氯基、溴基、碘基、氰基及醛基,另一邊取代基為氫、羥基、辛氧基以及全氟丁基磺酰氧基,我們認為這些具有不同取代基的五苯荑分子將有潛力被應用在相關的五苯荑系統上。


    The three-dimensional rigid iptycene frameworks such as triptycene and pentiptycene have found versatile usages in constructing molecules of both fundamental and practical importance. While the synthesis of many parent iptycenes is well-documented, further functionalization of their phenyl rings with both high regioselectivity and precise control of stoichiometry appears to be rather difficult in view of their high molecular symmetry. Although significant progress in the synthesis of more extended iptycene quinones has been made in the past years, transformation of these quinones to functionalized iptycenes has been poorly developed. To expedite the pentiptycene as well as larger iptycene chemistry, methodologies for facile synthesis of new iptycene building blocks are highly demanded.
    This thesis is aimed to develop efficient methodologies for the synthesis of new middle-ring monsubstituted or disubstituted pentiptycenes from pentiptycene quinones. We have successfully used deamination, halogenation, alkylation, cyaniding, and reduction reactions to prepare our target compounds. One of the substituents is a amino, diazo, nitro, chloro, bromo, iodo, cyano, or formyl group and the other is a hydrogen, hydroxy, alkoxy, or perfluoro-1-butane sulfonyloxy group. These functionalized pentiptycenes are potential building blocks for constructing novel pentiptycene-incorporated systems.

    中文摘要 英文摘要 謝誌 目錄...............................Ⅰ 圖表目錄...........................Ⅴ 附圖目錄...........................Ⅷ 第一章前言..........................1 1-1 荑(Iptycene)分子之介紹..........1 1-1-1 苯荑分子之類型與命名..........1 1-1-2 苯荑分子之性質................3 1-2-1 三苯荑分子....................3 1-2-2 五苯荑分子....................4 1-2-3 荑與荑醌(pentiptycene quinone)之間的差別...............5 1-3 荑醌(Iptycene quinone)之歷史.............................5 1-3-1 三苯荑醌與五苯荑醌起源.................................5 1-3-2 三苯荑醌合成之改進.....................................6 1-3-3 五苯荑醌合成之改進.....................................7 1-3-4 三苯荑醌與五苯荑醌之合成方法比較.......................9 1-4 苯荑分子之官能化.........................................9 1-4-1 官能化的分類...........................................9 1-4-2 三苯荑醌之官能化.......................................10 1-4-3 五苯荑醌之官能化.......................................12 1-4-4 三苯荑醌與五苯荑醌官能化之比較.........................12 1-4-5 五苯荑醌之官能化類型...................................14 1-4-6 苯荑分子外圍苯環與架橋之官能化.........................15 1-4-7 苯荑分子中心苯環官能化不易之原因.......................16 1-5 苯荑分子官能化之應用.....................................16 1-5-1 應用在液晶分子的排列...................................17 1-5-2 作為化學感應分子(Chemosensor) .........................18 1-5-3 應用在分子轉動的控制...................................19 1-5-4 應用在有機硫醇之金屬表面研究...........................20 1-5-5 苯荑分子之應用範圍.....................................21 1-6 研究動機.................................................21 第二章結果與討論.............................................23 2-1 五苯荑醌肟(Pentiptycene quinone monooxime)合成方法.......23 2-1-1 五苯荑醌肟之反應條件...................................23 2-1-2 五苯荑醌二肟(Pentiptycene quinone dioxime)之合成討論...24 2-2 胺基五苯荑酚(Aminopentiptycene phenol)之合成方法.........26 2-2-1 胺基五苯荑酚之反應條件.................................26 2-2-2 改善胺基五苯荑酚之溶解度...............................26 2-2-3 重氮鹽基五苯荑酚之合成方法.............................27 2-2-4 重氮鹽苯化合物(Benzenediazonium compound)之合成應用....28 2-3 胺基五苯荑酚之官能化討論.................................29 2-3-1 溴化之合成討論.........................................29 2-3-2 氯化之合成討論.........................................32 2-3-3 碘化之合成討論.........................................33 2-3-4 氰化之合成討論.........................................34 2-4 去胺基(Deamination)之合成討論............................35 2-4-1 氧氣的影響.............................................35 2-4-2 亞硝酸三級丁酯的競爭...................................37 2-4-3 次磷酸對去胺基反應的影響...............................40 2-4-4 五苯荑酚自由基之反應選擇性.............................42 2-4-5 五苯荑酚之合成討論.....................................43 2-4-6 反應機制的探討.........................................44 2-4-7 苯胺類分子硝化反應的探討...............................45 2-6 辛氧基五苯荑(Octyloxypentiptycene)之鹵化反應.............47 2-7 利用溴基辛氧五苯荑進行官能化.............................48 2-7-1 氰基辛氧五苯荑(Cyanopentiptycene)之合成方法............48 2-7-2 辛氧基五苯荑甲醛(Octyloxypentiptycene aldehyde)合成方法49 2-8 二碘五苯荑(Diiodopentiptycene)之合成策略.................49 2-9 碘基辛氧五苯荑應用在偶合反應.............................51 第三章結論...................................................53 第四章實驗部份...............................................55 4-1 實驗藥品與溶劑...........................................55 4-2 實驗儀器.................................................60 4-3 實驗步驟.................................................60 五苯荑醌(化合物3)之合成......................................65 五苯荑醌肟(化合物5)之合成....................................65 胺基五苯荑酚(化合物8)之合成..................................66 重氮鹽五苯荑酚(化合物9)之合成................................66 溴五苯荑酚(化合物10)之合成...................................67 硝基五苯荑酚(化合物11)之合成.................................67 五苯荑酚(化合物12)之合成.....................................68 氯五苯荑酚(化合物13)之合成...................................68 碘五苯荑酚(化合物14)之合成...................................69 氰基五苯荑酚(化合物15)之合成.................................70 辛氧基五苯荑(化合物17)之合成.................................70 辛氧基碘五苯荑(化合物18)之合成...............................71 辛氧基溴五苯荑(化合物19)之合成...............................71 氰基辛氧五苯荑(化合物20)之合成...............................72 辛氧基五苯荑甲醛(化合物21)之合成.............................72 化合物22 之合成..............................................73 硝基五苯荑(化合物25)之合成...................................74 化合物30 之合成..............................................74 化合物31 之合成..............................................75 化合物32 之合成..............................................76 化合物33 之合成..............................................77 化合物34 之合成..............................................77 參考文獻.....................................................79

    1. Bartlett, P.D.; Ryan, M.J.; Cohen, S.G. J. Am. Chem. Soc. 1942,
    64, 2649
    2. Skvarchenko, V. R. Dokl. Akad. Nuuk SSSR, Ser. Khim. 1974, 216, 110
    3. Huebner, C. F.; Puckett, R. T.; Brzechfta, M.; Schwartz, S. L.
    Tetrahedron Lett. 1970, 359.
    4. Shahlai, K.; Hart, H. J. Org. Chem. 1991, 56, 6905
    5. Witing, G.; Ludwig, R. Angew. Chem. 1956, 68, 40
    6. Hart, H.; Shamouilian, S.; Takehira, Y. J. Org. Chem. 1981, 46, 4427
    7. Clar, E. Chem. Ber. 1931, 64, 1676
    8. Wiehe, A.; Senge, M. O.; Schäfer, A.; Speck, M.; Tannert, S.;
    Kurreck, H.; Röder, B. Tetrahedron 2001, 57, 10089
    9. Zhu, X.-Z.; Chen, C.-F. J. Org. Chem. 2005, 70, 917
    10. Theilacker, W.; Berger-Brose, U.; Beyer, K.-H. Chem. Ber. 1960, 93,
    1658
    11. Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 11864
    12. Williams, V. E.; Swager, T. M. Macromolecules 2000, 33, 4069
    13. Godinez, C. E.; Zepeda, G.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2002, 124, 4701
    14. Nesterov, E. E.; Zhu, Z.; Swager, T. M. J .Am. Chem. Soc. 2005, 127, 10083
    15. Yang, J.-S.; Lee, C.-C.; Yau, S.-L.; Chang, C.-C.; Lee, C.-C.;
    Leu, J.-M. J. Org. Chem. 2000, 65, 871
    16. Dominguez, Z.; Dang, H.; Strouse, M. J.; Garcia-Garibay, M. A.
    J. Am. Chem. Soc. 2002, 124, 7719
    17. Jimenez, M. C.; Dietrich-Buchecker, C. O.; Sauvage, J. P.
    Angew. Chem., Int. Ed. 2000, 39, 3284
    18. Annunziata, R.; Benaglia, M.; Cinquini, M.; Raimondi, L.; Cozzi, F.
    J. Phys. Org. Chem. 2004, 17, 749
    19. Long, T. M.; Swager, T. M. J. Am. Chem. Soc. 2002, 124, 3826
    20. Zhu, Z.; Swager, T. M. Org. Lett. 2001, 3, 3471
    21. Zhu, Z.; Swager, T. M. J. Am. Chem. Soc. 2002, 124, 9670
    22. Kim, Y.; Whitten, J. E.; Swager, T. M. J. Am. Chem. Soc. 2005, 127, 12122
    23. Breen, C. A.; Rifai, S.; Bulovic, V.; Swager, T. M. Nano Lett. 2005, 5, 1597
    24. Yang, J.-S.; Lin, C.-S.; Hwang, C.-Y. Org. Lett. 2001, 3, 889
    25. Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 5321
    26. Kelly, T. R.; Silva, H. D.; Silva, R. A. Nature 1999, 401, 150.
    27. Yang, J.-S.; Liu, C.-P.; Lee, G.-H. Tetrahedron Lett. 2000, 41 7911
    28. Yang, J.-S.; Liu, C.-P.; Lin, B.-C.; Tu, C.-W.; Lee, G.-H. J. Org. Chem. 2002, 67, 7343
    29. Hodgson, H. H. Chem. Rev. 1947, 40, 251
    30. Bergmann, B. D.; Berkovic, S.; Ikan, R. J. Am. Chem. Soc. 1956, 78, 6037
    31. Walker, T. E.; Matheny, C.; Storm, C. B.; Hayden, H. J. Org. Chem. 1986, 51, 1175
    32. Kirste, B.; Kurreck, H.; Sordo, M. Chem. Ber. 1985, 118, 1782
    33. Haghbeen, K.; Tan, E.-W. J. Org. Chem. 1998, 63, 4503
    34. Doyle, M. P.; Siegfried, B.; Dellaria, J. F. J. Org. Chem. 1977, 42, 2426
    35. Cadogan, J. I. G.; Molina, G. A. J. Chem. Soc., Perkin Trans I. 1973,
    541
    36. Mitchell, R. H.; Lai, Y.-H.; Williams, R. V. J. Org. Chem. 1979, 44, 4733
    37. Sy, W.-W. Synth. Commun. 1992, 22, 3215
    38. Katritzky, A. R.; Li, J.; Stevens, C. V. Org. Prep. Proced.. Int. 1994, 26, 439
    39. McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 115, 6094
    40. Kotsuki, H.; Datta, P. K.; Hayakawa, H.; Suenaga, H. Synthesis, 1995, 1348
    41. Newman, M. S.; Boden, H. J. Org. Chem. 1961, 26, 2525
    42. Lai, G.; Anderson, W. K. Tetrahedron 2000, 56, 2583
    43. Raap, J.; Nieuwenhuis, S.; Creemers, A.; Hexspoor, S.; Kragl, U.; Lugtenburg, J. Eur. J. Org. Chem. 1999, 2609

    QR CODE
    :::