| 研究生: |
徐蔚 Wei Hsu |
|---|---|
| 論文名稱: |
異質接面矽晶太陽能電池製備與光電轉換效率之優化探討 The fabrication and optimization of silicon hetero-junction solar cells for high conversion efficiency |
| 指導教授: |
張正陽
Jenq-Yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 異質接面矽晶太陽能電池 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
異質接面太陽能電池(HIT)相較傳統矽晶電池(Diffusion cells)有幾項優點: 低溫低耗能製程、較高的開路電壓(Voc)與較好的溫度特性。本研究以電子迴旋共振化學氣相沉積法(Electron Cyclotron Resonance Chemical Vapor Deposition, ECRCVD)搭配電漿輔助化學氣相沉積法(Plasma Enhanced Chemical Vapor Deposition, PECVD)互相結合,來成長異質接面矽晶太陽能電池所需的摻雜層及鈍化層,並探討太陽能電池在光電特性與轉換效率上的表現。ECRCVD具有高沉積速率、低工作壓力、低離子轟擊且無電極汙染等優點,因此本研究利用ECR製作硼摻雜層當作射極層(Emitter)。而PECVD具有低沉積速率且容易成長高品質的超薄鈍化膜(厚度~5nm)與磷摻雜薄膜,因此本研究藉由PECVD沉積優良的鈍化層和背表面電場(BSF)來研製異質矽晶太陽能電池的效率優化探討。
本研究分別對優化載子生命週期、氫化非晶矽薄膜厚度、單晶矽基板厚度、摻雜層厚度與不同金字塔基板的數項製程因子對太陽能電池之影響進行討論。首先是使用pi-ip、ni-in堆疊結構分析生命週期,及對開路電壓與效率之影響;而在異質接面矽晶太陽能電池方面,利用電池結構為 Ag/ITO/a-Si:H(p)/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(n)/ITO/Ag 於n型平面矽晶基板上調變氫化非晶矽薄膜厚度為0~10 nm時,可於10 nm鈍化薄膜製作而成面積1×1 cm2之異質接面矽晶太陽能電池的開路電壓可達690 mV;另外在調變單晶矽基板厚度由180 μm至50 μm時,在50 μm之n型平面超薄矽晶基板,可有效地降低載子複合速率到6 cm/s,且可得到最佳光電轉換效率: 開路電壓651 mV、短路電流29.28 mA/cm2、填充因子65.40 %、轉換效率12.46 %,由於超薄基板亦可降低太陽能電池晶片成本,因此預期會是往後極力發展的目標之一;固定摻雜層厚度為20 nm時有較佳的效率,因為在電性表現較好、載子濃度足夠;最後則是以不同金字塔尺寸基板所製作的異質接面太陽能電池做相互比較並分析,在厚度為200 μm 之n型矽晶基板上具有金字塔顆粒大小為3~5 μm,製作而成的異質接面矽晶太陽能電池可得到最佳光電轉換效率: 開路電壓660 mV、短路電流36.71 mA/cm2、填充因子71.1 %、轉換效率17.2 %。
Heterojunction with Intrinsic Thin layer (HIT) solar cells have some advantages about low temperature, low power, high open circuit voltage, and good temperature coefficient. They are better than Diffusion cells. In this study, ECRCVD was used for the deposition of high doping silicon thin films, and PECVD was used for the deposition of high doping silicon thin films and passivation layers. These thin films were deposited on single-crystalline silicon substrate to fabricate the silicon hetero-junction solar cells. The optical properties, electrical properties, and solar cell performance of hetero-junction solar cells were investigated. ECRCVD has advantage about high deposition, low working pressure, low ion bombardment, and no electrode contamination. The boron-doped layer was deposited by ECR as emitter in HIT solar cells. On the other hand, the high quality passivation layers and the back surface field of phosphorus-doped layer were deposited by PECVD to fabricate the silicon hetero-junction solar cells.
We will investigate the optimization of carrier lifetime, different passivation layer, different wafer thickness, different doping layer, and different texture wafers. First, we are going to improve Voc and investigate the carrier lifetime with the structure of pi-ip and ni-in. The structure of HIT solar cell is Ag/ITO/a-Si:H(p)/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(n)/ITO /Ag. The characteristics of hetero-junction solar cell on n-type planar substrate with the 10 nm-thick passivation layer are shown as follow: Voc = 690 mV in the area of 1 cm2. Moreover, the different thickness of wafers varying from 180 μm to 50 μm were also investigated. For 50 μm-thick substrate, the characteristics of hetero-junction solar cell on n-type planar substrate were shown as follow: surface recombination rate: 6 cm/s, Voc = 651 mV, Jsc = 29.28 mA/cm2, F.F. = 65.40 %, Efficiency = 12.46 %. This result is outstanding, therefore we will continue to research the HIT solar cells with ultra-thin substrates in the future. In our study, using the 20 nm-thick doping layer as emitter can achieve good conversion efficiency. In the end, we modulate the different textured wafers for HIT solar cells. The characteristics of 200 μm-thick hetero-junction solar cell with the grain size around 3~5 μm on n-type textured substrate are shown as follow: Voc = 660 mV, Jsc = 36.7 mA/cm2, F.F. = 71.1 %, Efficiency = 17.2 %.
參考文獻
[1]國家奈米實驗室,取自http://www2.ndl.narl.org.tw/web/research/energy.php
[2]KRI Report, No. 8: Solar Cells, February, (2005).
[3]矽。取自http://zh.wikipedia.org/wiki/%E7%A1%85
[4]S Summers and H S Reehal, ”High rate growth of preferentially orientated crystalline silicon films by ECR plasma CVD”, 3rd World Conference on Photovoltaic Energy Conversion, p. 11–18, Osaka, Japan (2003).
[5]建德研究所資料/半導體提供檔案/Chap8_化學氣相沉積
[6]Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles (4e), McGraw-Hill, (2012).
[7]Pelanchon, F., P. Mialhe, and J.P. Charles, “The photocurrent and the open-circuit voltage of a silicon solar-cell”, solar cells, 28(1): p. 41–55, (1990).
[8]Schimpe, R.,Theory of reflection at the facet of a semiconductor-laser. Aeu-Archiv Fur Elektronik Und Ubertragungstechnik-International Journal of Electronics and Communications, 46(2): p. 80–85, (1992).
[9]M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, (2001).
[10]莊達人編著, VLSI 製造技術, 高立圖書有限公司, p. 357, (1996).
[11]A. Matsuda and K. Tanaka, Thin Solar Film, Vol. 171, (1982).
[12]R. Robertson, D. Hils, H. Chatham, and A. Gallagher, “Radical species in argon‐silane discharges”, Appl. Phys. Lett, Vol. 544, (1983).
[13]陳治明,非晶半導體材料與器件,科學出版社,民國八十年。
[14]A. Matsuda, “Microcrystalline silicon. Growth and device application”, Journal of Non-Crystalline Solids, Vol. 338, p. 1–12, (2004).
[15]Min Gu Kang a , and S. Tark, “Changes in efficiency of a solar cell according to various surface-etching shapes of silicon substrate”, Journal of Crystal Growth , Vol. 326, p. 14–18, (2011).
[16]Netherlands Energy Research Foundation ECN, NL1755 ZG Petten, The Netherlands/ Simplified evaluation method for light-biased effective lifetime measurements.
[17]T. S. Horanyi, T. Pavelka, and P. Tutto, “In situ bulk lifetime measurement on silicon with a chemically passivated surface”, Applied Surface Science, Vol. 63, p. 306–311, (1993).
[18]Mikio Taguchi, Ayumu Yano, Satoshi Tohoda, and Kenta Matsuyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer”, IEEE Journal of photovoltaics , Vol. 4, NO. 1, (2014).
[19]Takahiro Mishima n, Mikio Taguchi, Hitoshi Sakata, and Eiji Maruyama, “Development status of high-efficiency HIT solar cells”, Solar Energy Materials & Solar Cells, (2010).
[20]F.Jay n, D.Muñoz, T.Desrues, E.Pihan, and V.Amaralde Oliveira, ”Advanced process for n-type mono-like silicon a-Si:H/c-Si heterojunction solar cells with 21.5% efficiency”, (2014).
[21]Thomas Muellera, Johnson Wonga and Armin G. Aberle, ”Heterojunction Silicon Wafer Solar Cells using Amorphous Silicon Suboxides for Interface Passivation”, (2012).
[22]Christophe Ballif, Loris Barraud, and Antoine Descoeudres, ”A-Si:H/c-Si heterojunctions: a future mainstream technology for high efficiency crystalline silicon solar cells”, (2011).
[23]R. Gogolin a,n, R.Ferre a, and M.Turcu, “Silicon heterojunction solar cells: Influence of H2-dilution on cell performance”, (2012).
[24]Hseuh-Chuan Lee and Lu-Sheng Hong, ”High-rate deposition of a-Si:H thin layers for high-performance silicon heterojunction solar cells”, (2013).
[25]Chia-Hsun Hsu, Shui-Yang Lien, and Dong-SingWuu, ”Effect of Hydrogen Content in Intrinsic a-Si:H on Performances of Heterojunction Solar Cells”, (2013).
[26]許元錫, “The comparative study of electrical and conversion efficiency performance for homo-junction and hetero-junction c-Si solar cells”, 國立中央大學, (2014).
[27]Donald A. Neamen, “Semiconductor Physics and Devices”, p. 177–180, (2003).
[28]Satoshi Tohoda, Daisuke Fujishima, Ayumu Yano, Akiyoshi Ogane, Kenta Matsuyama, and Yuya Nakamura, “Future directions for higher-efficiency HIT solar cells using a Thin Silicon Wafer”, (2012).