跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃新維
Hsin-wei Huang
論文名稱: 利用中孔徑矽分子篩MCM-41分離、量測大氣二氧化碳
Using MCM-41 as a separation material for the measurements of atmospheric CO2
指導教授: 王家麟
Jia-lin Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 98
語文別: 中文
論文頁數: 103
中文關鍵詞: 二氧化碳氣相層析MCM-41中孔徑矽分子篩
外文關鍵詞: Carbon dioxide, gas chromatography, MCM-41, mesoporous silicates
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中利用中孔徑矽分子篩MCM-41作為填充靜相,自製填充層析管柱,完成一自動氣相層析系統,針對大氣溫室效應氣體CO2進行大氣連續監測。系統以逆吹方式設計,在定溫下達到管柱自我清除與調適之目的。利用MCM-41其較大孔徑(46.6A)的特性,使空氣中的N2、O2、CH4與CO等小分子物種可與CO2做快速分離而流析出,而高沸點物質可在進入分析管柱前即被逆吹帶出預管柱使不致累積於分析管柱內影響層析效果。偵測方式是以自製鎳觸媒管做為甲烷轉化器,將CO2還原成為CH4,再使用火焰離子偵測器(FID)偵測之,間接測得CO2濃度。又另建置一自動進樣系統,將標準氣體以及大氣樣品的進樣動作全部自動完成,達到連續監控大氣中CO2的目的。完成後之層析系統其線性(R2)可達0.995,再現性優於1%以內, 偵測下限為10 ppmv 。本方法與氣體過濾相關光度計(gas filtercorrelation photometer)進行平行比測,為期32天連續監測大氣中之CO2濃度,以驗證本方法在連續監測大氣CO2的穩定性與準確性,開啟中孔徑矽分子篩在大氣溫室效應氣體層析方面的嶄新應用。
    實驗後期對MCM-41的耐久性做探討,管柱內之MCM-41雖受長時間空氣進樣時所帶入的水氣導致結塊現象而影響到層析的穩定性,但經過XRD鑑定後其多孔結構在使用前後無顯著差異,可知MCM-41的多孔結構具有良好的穩定性。再利用商業材料Hayesep Q填充管柱與MCM-41管柱比較之,發現CO2峰之滯留時間仍有小幅度之變動(RSD = 0.41%),且感度存在一微幅之上升趨勢,顯示觸媒轉換效率無法維持長期穩定,需藉由定期打入標準氣體以校正此系統性之偏差。


    In this study, mesoporous silicate MCM-41 was used as the stationary
    phase of a packed column in an back-flushed automated gas chromatographic system for analyzing atmospheric CO2. Because of the larger pore size (46.6A) of MCM-41, smaller molecules in air like N2, O2, CH4, and CO combined can be rapidly separated from CO2. The backflush chromatographic design allowed column self-cleaning and conditioning, which is curtail for long-term continuous operation. For detection CO2 was reduced into CH4 by a methanizer using Ni as the catalyst kept at 375℃. Methane detected by flame ionization detection (FID) was proportional to atmospheric CO2 concentration. Sample injection was performed by a pressure setpoint of 700 torr in a 0.81mL sample loop with a precision (RSD) of 0.049%, and can be switched between ambient air and standard gas. The linearity (R2) was better than 0.995, the reproducibility was within 1%, and the detection limit was 10 ppmv. The GC system was intercompared with a gas filter correlation (GFC) photometer for continuous monitoring atmospheric CO2 for a period of 32 days. Comparable results were observed with CO2 concentration varied between 334.1 and 681.4 ppmv with a mean value of 409.9 ppmv. The agreement can be revealed by a correlation coefficient of 0.82 between the two methods. The success in the use of mesoporous silicates for chromatographic analysis of CO2 opened new room for greenhouse gas monitoring.
    In later study, the durability of MCM-41 was examined by unpacking
    MCM-41 from the column after prolonged use. Although agglomeration of
    MCM-41 particles by water vapor in air sample aliquots was observed, which
    somewhat affected the peak retention time, powered X-ray analysis suggested that the integrity of the porosity still remained intact. A commercial packing material Hayesep Q was further compared with MCM-41 to verify the system stability. It was found that the slight increasing trend in sensitivity was likely due to the slow degradation of Ni catalyst overtime, which can be overcome and corrected by daily calibration.

    摘 要.....................................................................................................I Abstract ............................................................................................................ III 謝 誌...................................................................................................V 目 錄.............................................................................................. VIII 圖 目 錄..................................................................................................XI 表 目 錄...............................................................................................XIV 第一章、前言.................................................................................................... 1 1-1 研究緣起..................................................................................................1 1-2 CO2分析方法與文獻回顧......................................................................3 1-2-1 氣相層析儀/火焰離子偵測器............................................................ 5 1-2-2 非分散式紅外光吸收法...................................................................10 1-2-3 腔體震盪光譜法...............................................................................15 1-3 全球量測現況.......................................................................................18 1-4 中孔徑分子篩.......................................................................................22 1-4-1 簡介...................................................................................................22 1-4-2 合成機制...........................................................................................24 1-4-3 MCM-41應用.....................................................................................28 1-5 研究動機................................................................................................30 二、實驗方法.................................................................................................. 31 2-1 器材與試劑............................................................................................31 2-1-1 實驗藥品...........................................................................................31 2-1-2 實驗器材...........................................................................................33 2-2 系統設計................................................................................................34 2-2-2 進樣壓力控制...................................................................................37 2-2-3 自動化標準品進樣方法...................................................................41 2-3 層析管柱選擇.......................................................................................45 2-4 鎳觸媒甲烷化裝置...............................................................................47 2-5 逆吹系統................................................................................................52 三、結果與討論.............................................................................................. 55 3-1 甲烷轉化器溫度...................................................................................55 3-2 MCM-41層析管柱定性.........................................................................57 3-3 實測測量................................................................................................59 3-3-1 分析條件...........................................................................................59 3-3-2 樣品殘留...........................................................................................60 3-3-3 工作標準品校正...............................................................................63 3-3-4 再現性與線性表現...........................................................................65 3-3-5 實測...................................................................................................67 3-4 層析條件變化.......................................................................................72 3-4-1 圖譜飄移...........................................................................................72 3-4-2 靜相變質...........................................................................................73 3-4-3 MCM-41結構.....................................................................................77 3-5 問題查證................................................................................................80 3-5-1 實驗條件...........................................................................................80 3-5-2 甲烷分析...........................................................................................81 3-5-3 層析圖譜...........................................................................................83 3-5-4 系統穩定度.......................................................................................86 第四章、結論與未來展望............................................................................. 90 第五章、參考文獻.......................................................................................... 92 附錄一 安捷倫軟體Chemstation批次檔使用............................................ 98

    1.Beck, E.-G., 180 years of atmospheric CO2 gas analysis by chemical methods.Energy & Environment 2007, 18, (2), 259-282.
    2.Martin, W. M.; Green, J. R., Determination of Carbon Dioxide in Continuous
    Gas Streams. Industrial & Engineering Chemistry Analytical Edition 1933, 5, (2), 114-118.
    3.A Brief History of CO2 Measurements.
    http://airs.jpl.nasa.gov/story_archive/Measuring_CO2_from_Space/History_C
    O2_Measurements/
    4.Kaminski, M.; Kartanowicz, R.; Jastrzebski, D.; Kaminski, M. M., Determination of carbon monoxide, methane and carbon dioxide in refinery
    hydrogen gases and air by gas chromatography. Journal of Chromatography
    A 2003, 989, (2), 277-283.
    5. Smith, R. N.; Swinehart, J.; Lesnini, D. G., Chromatographic Analysis of Gas
    Mixtures Containing Nitrogen, Nitrous Oxide, Nitric Oxide, Carbon
    Monoxide, and Carbon Dioxide. Analytical Chemistry 1958, 30, (7), 1217-
    1218.
    6.Porter, K.; Volman, D. H., Flame Ionization Detection of Carbon Monoxide
    for Gas Chromatographic Analysis. Analytical Chemistry 1962, 34, (7), 748-
    749.
    7.Trivett, N. B. A.; Worthy, D. E. J.; Brice, K. A., Surface measurements of
    carbon dioxide and methane at Alert during an Arctic haze event in April,
    1986. Journal of Atmospheric Chemistry 1989, 9, (1), 383-397.
    8.Jeon, E.-C.; Myeong, S.; Sa, J.-W.; Kim, J.; Jeong, J.-H., Greenhouse gas
    emission factor development for coal-fired power plants in Korea. Applied
    Energy 87, (1), 205-210.
    9.van Rensburg, M.; Botha, A.; Ntsasa, N.; Tshilongo, J.; Leshabane, N.,
    Towards the simultaneous detection of the low nmol/mol range of CO, CH4
    and CO2 in nitrogen using GC-FID. Accreditation and Quality Assurance:
    Journal for Quality, Comparability and Reliability in Chemical Measurement
    2009, 14, (12), 665-670.
    10.Schuck, T. J.; Brenninkmeijer, C. A. M.; Slemr, F.; Xueref-Remy, I.; Zahn,
    A., Greenhouse gas analysis of air samples collected onboard the CARIBIC
    passenger aircraft. Atmos. Meas. Tech. 2009, 2, (2), 449-464.
    11.van der Laan, S.; Neubert, R. E. M.; Meijer, H. A. J., A single gas
    chromatograph for accurate atmospheric mixing ratio measurements of CO2,
    CH4, N2O, SF6 and CO. Atmos. Meas. Tech. 2009, 2, (2), 549-559.
    12.PRICE, S.; PALES, J. C., THE MAUNA LOA HIGH-ALTITUDE
    OBSERVATORY. Monthly Weather Review 1959, 87, (1), 1-14.
    13.Teacher Resources - Carbon Cycle Toolkit.
    http://www.esrl.noaa.gov/gmd/education/carbon_toolkit/faq.html
    14.INFRARED GAS ANALYZERS AND GAS FILTER CORRELATION.
    http://www.k2bw.com/5_c_18.htm
    15.O''Keefe, A.; Deacon, D. A. G., Cavity ring-down optical spectrometer for
    absorption measurements using pulsed laser sources. Review of Scientific
    Instruments 1988, 59, (12), 2544-2551.
    16.Zalicki, P.; Zare, R. N., Cavity ring-down spectroscopy for quantitative
    absorption measurements. The Journal of Chemical Physics 1995, 102, (7),
    2708-2717.
    17.Jongma, R. T.; Boogaarts, M. G. H.; Holleman, I.; Meijer, G., Trace gas
    detection with cavity ring down spectroscopy. Review of Scientific
    Instruments 1995, 66, (4), 2821-2828.
    18.Fuchs, H.; DubeAA, W. P.; Lerner, B. M.; Wagner, N. L.; Williams, E. J.;
    Brown, S. S., A Sensitive and Versatile Detector for Atmospheric NO2 and
    NOX Based on Blue Diode Laser Cavity Ring-Down Spectroscopy.
    Environmental Science & Technology 2009, 43, (20), 7831-7836.
    19.Dube, W. P.; Brown, S. S.; Osthoff, H. D.; Nunley, M. R.; Ciciora, S. J.;
    Paris, M. W.; McLaughlin, R. J.; Ravishankara, A. R., Aircraft instrument for
    simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ringdown
    spectroscopy. Review of Scientific Instruments 2006, 77, (3), 034101-11.
    20.Fuchs, H.; DubeAA, W. P.; Ciciora, S. J.; Brown, S. S., Determination of
    Inlet Transmission and Conversion Efficiencies for in Situ Measurements of
    the Nocturnal Nitrogen Oxides, NO3, N2O5 and NO2, via Pulsed Cavity
    Ring-Down Spectroscopy. Analytical Chemistry 2008, 80, (15), 6010-6017.
    21.Crosson, E. R., A cavity ring-down analyzer for measuring atmospheric
    levels of methane, carbon dioxide, and water vapor. Applied Physics B:
    Lasers and Optics 2008, 92, (3), 403-408.
    22.Mays, K. L.; Shepson, P. B.; Stirm, B. H.; Karion, A.; Sweeney, C.; Gurney,
    K. R., Aircraft-Based Measurements of the Carbon Footprint of Indianapolis.
    Environmental Science & Technology 2009, 43, (20), 7816-7823.
    23.http://db.cger.nies.go.jp/gem/moni-e/index-e.html
    24.VOS - The WMO Voluntary Observing Ships (VOS) Scheme.
    http://vos.noaa.gov/vos_scheme.shtml
    25.Interactive Atmospheric Data Visualization.
    http://www.esrl.noaa.gov/gmd/ccgg/iadv/
    26.行政院環保署 - 鹿林山背景測站.
    http://taqm.epa.gov.tw/lulin/default.aspx?pid=b0107&cid=b0107
    27.陳海茵. 一氧化碳與二氧化碳分析系統的建立與驗證. 國立中央大學化
    學研究所, 2006.
    28.Carbon Cycle Gases Lulin, Taiwan Time Series.
    http://www.esrl.noaa.gov/gmd/dv/site/LUL.html
    29.Sayari, A., Catalysis by Crystalline Mesoporous Molecular Sieves. Chemistry
    of Materials 1996, 8, (8), 1840-1852.
    30.Wu, C.-G.; Bein, T., Polyaniline Wires in Oxidant-Containing Mesoporous
    Channel Hosts. Chemistry of Materials 1994, 6, (8), 1109-1112.
    31.Wu, C.-G.; Bein, T., Conducting Polyaniline Filaments in a Mesoporous
    Channel Host. Science 1994, 264, (5166), 1757-1759.
    32.Kosuge, K.; Murakami, T.; Kikukawa, N.; Takemori, M., Direct Synthesis of
    Porous Pure and Thiol-Functional Silica Spheres through the S+X-I+
    Assembly Pathway. Chemistry of Materials 2003, 15, (16), 3184-3189.
    33.Lee, Y. S.; Surjadi, D.; Rathman, J. F., Effects of Aluminate and Silicate on
    the Structure of Quaternary Ammonium Surfactant Aggregates. Langmuir
    1996, 12, (26), 6202-6210.
    34.Koyano, K. A.; Tatsumi, T., Synthesis of titanium-containing MCM-41.
    Microporous Materials 1997, 10, (4-6), 259-271.
    35.Bhattacharyya, S.; Lelong, G.; Saboungi, M.-L., Recent progress in the
    synthesis and selected applications of MCM-41: a short review. Journal of
    Experimental Nanoscience 2006, 1, (3), 375 - 395.
    36.Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S.,
    Ordered mesoporous molecular sieves synthesized by a liquid-crystal
    template mechanism. Nature 1992, 359, (6397), 710-712.
    37.Ying, J. Y.; Mehnert, C. P.; Wong, M. S., Synthesis and Applications of
    Supramolecular-Templated Mesoporous Materials. Angewandte Chemie
    International Edition 1999, 38, (1-2), 56-77.
    38.Soler-Illia, G. J. d. A. A.; Sanchez, C.; Lebeau, B.; Patarin, J., Chemical
    Strategies To Design Textured Materials: from Microporous and Mesoporous
    Oxides to Nanonetworks and Hierarchical Structures. Chemical Reviews 2002,
    102, (11), 4093-4138.
    39.廖千宜. 多孔材料吸附特性研究與氣體線上校正方法探討. 國立中央大
    學化學研究所, 2009.
    40.Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.;
    Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W., A new family
    of mesoporous molecular sieves prepared with liquid crystal templates.
    Journal of the American Chemical Society 1992, 114, (27), 10834-10843.
    41.Chen, C.-Y.; Li, H.-X.; Davis, M. E., Studies on mesoporous materials: I.
    Synthesis and characterization of MCM-41. Microporous Materials 1993, 2,
    (1), 17-26.
    42.Chen, C.-Y.; Burkett, S. L.; Li, H.-X.; Davis, M. E., Studies on mesoporous
    materials II. Synthesis mechanism of MCM-41. Microporous Materials 1993,
    2, (1), 27-34.
    43.Wu, T.-M.; Wu, G.-R.; Kao, H.-M.; Wang, J.-L., Using mesoporous silica
    MCM-41 for in-line enrichment of atmospheric volatile organic compounds.
    Journal of Chromatography A 2006, 1105, (1-2), 168-175.
    44.Martin, T.; Galarneau, A.; Di Renzo, F.; Brunel, D.; Fajula, F.; Heinisch, S.;
    Cretier, G.; Rocca, J.-L., Great Improvement of Chromatographic
    Performance Using MCM-41 Spheres as Stationary Phase in HPLC.
    Chemistry of Materials 2004, 16, (9), 1725-1731.
    45.Shindo, T.; Kudo, H.; Kitabayashi, S.; Ozawa, S., Applicability of MCM-41
    as column packing in HPLC for the evaluation of aluminum species in
    partially neutralized aluminum solutions. Microporous and Mesoporous
    Materials 2003, 63, (1-3), 97-104.
    46.Raimondo, M.; Perez, G.; Sinibaldi, M.; De Stefanis, A.; A. G. Tomlinson,
    A., Mesoporous M41S materials in capillary gas chromatography. Chemical
    Communications 1997, 0, (15).
    47.Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A., Adsorption of CO2 from
    dry gases on MCM-41 silica at ambient temperature and high pressure. 1:
    Pure CO2 adsorption. Chemical Engineering Science 2009, 64, (17), 3721-
    3728.
    48.Zhao, X. S.; Lu, G. Q.; Millar, G. J., Advances in Mesoporous Molecular
    Sieve MCM-41. Industrial & Engineering Chemistry Research 1996, 35, (7),
    2075-2090.
    49.Xu, X.; Song, C.; Miller, B. G.; Scaroni, A. W., Influence of Moisture on
    CO2 Separation from Gas Mixture by a Nanoporous Adsorbent Based on
    Polyethylenimine-Modified Molecular Sieve MCM-41. Industrial &
    Engineering Chemistry Research 2005, 44, (21), 8113-8119.
    50.Belmabkhout, Y.; Sayari, A., Adsorption of CO2 from dry gases on MCM-41
    silica at ambient temperature and high pressure. 2: Adsorption of CO2/N2,
    CO2/CH4 and CO2/H2 binary mixtures. Chemical Engineering Science 2009,
    64, (17), 3729-3735.
    51.蕭麗君. 新吸附材料用空氣中揮發性物質的萃取方法開發. 國立中央大
    學化學研究所, 2005.
    52.吳季融. 空氣中有機污染物自動分析技術之開發研究壹、碳沸石多重床
    與中孔徑矽沸石之氣體吸附特性研究貳、有機污染物垂直探空光化研究.
    國立中央大學化學研究所, 2003.
    53.劉謹瑜. 以中孔徑矽分子篩作為氣相PAHs吸附劑之探討. 國立中央大學
    化學研究所, 2008.
    54.吳東明. 中孔徑矽分子篩與微孔徑碳分子篩使用於 Voc 線上濃縮之吸
    附性比較. 國立中央大學化學研究所, 2005.
    55.Franchi, R. S.; Harlick, P. J. E.; Sayari, A., Applications of Pore-Expanded
    Mesoporous Silica. 2. Development of a High-Capacity, Water-Tolerant
    Adsorbent for CO2. Industrial & Engineering Chemistry Research 2005, 44,
    (21), 8007-8013.
    56.Wang, J.-L.; Kuo, S.-R.; Ma, S.-S.; Chen, T.-Y., Construction of a low-cost
    automated chromatographic system for the measurement of ambient methane.
    Analytica Chimica Acta 2001, 448, (1-2), 187-193.
    57.Moulijn, J. A.; van Diepen, A. E.; Kapteijn, F., Catalyst deactivation: is it
    predictable?: What to do? Applied Catalysis A: General 2001, 212, (1-2), 3-
    16.
    58.Forzatti, P.; Lietti, L., Catalyst deactivation. Catalysis Today 1999, 52, (2-3), 165-181.
    59.Bartholomew, C. H., Mechanisms of catalyst deactivation. Applied Catalysis
    A: General 2001, 212, (1-2), 17-60.
    60.Keeling, C. D.; Bacastow, R. B.; Bainbridge, A. E.; Jr., C. A. E.; Guenther, P.
    R.; Waterman, L. S.; Chin, J. F. S., Atmospheric carbon dioxide variations at
    Mauna Loa Observatory, Hawaii. Tellus 1976, 28, (6), 538-551.
    61.歐陽長風. 一氧化碳背景值自動監測系統之架構. 國立中央大學, 2003.

    QR CODE
    :::