跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李羿賢
Yi-Xian Li
論文名稱: 熱帶對流層氣溫之主要擾動有多接近對流準平衡?
How Close Are Leading Tropical Tropospheric Temperature Perturbations to Those under Convective Quasi-Equilibrium?
指導教授: 余嘉裕
Jia-Yuh Yu
許晃雄
Huang-Hsiung Hsu
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 國際研究生博士學位學程
Taiwan international graduate program - Earth system science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 101
中文關鍵詞: 對流準平衡熱帶對流層氣溫
外文關鍵詞: Convective Quasi-Equilibrium, Tropical Tropospheric Temperature
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在對流準平衡理論中,熱帶對流層之溫度擾動預期受對流約束而遵循特定的垂直剖面(在本論文中稱其為 A-profile,常近似於濕絕熱線間剖面相減)。此研究發現在對流情況下:基於濕靜能守恆所導出的理想化A-profile與有/無將逸入納入計算的氣柱溫度擾動之差異皆不大—端賴於深對流好發於低對流層水氣接近飽和之時,從而大限度地減少了逸入對於對流層溫度的影響。因此,鑑於觀測氣溫剖面的假絕熱擾動法便提供了精簡實用的 A-profile計算基準。
    在低於中性浮力高度(LNB)的大氣中,我們將A-profile與 ERA-Interim 再分析和 AIRS 衛星反演資料中經驗正交函數的首要模式(TEOF1)進行比較:具有高 LNB(通常高於400 hPa)的 TEOF1與 A -profile在垂直方向上存在高空間相關係數(~0.9),表明在有利於深對流的環境中:對流層溫度擾動傾向於符合對流準平衡假設。反之,較低的相關係數往往發生在氣候上 LNB 較低、不利於深對流的地區。我們亦發現若屏除低 LNB 之時刻,熱帶地區整體的垂直空間相關係數將顯著增加。
    鄰近LNB的溫度擾動存在對A -profile的負偏差值—即對流冷頂(Convective cold top)現象—且LNB越高,其偏離程度越大。在相關係數較低的地區可觀察到TEOF1對A-profile的偏移量在600 hPa以下呈S形,且常伴隨著較乾燥的低對流層。即使垂直空間相關性和TEOF1可解釋變異量在較短的時間尺度上趨於降低,上述所有研究成果自日至月的廣泛時間尺度上都是穩健的。


    In convective quasi-equilibrium theory, tropical tropospheric temperature perturbations are expected to follow vertical profiles constrained by convection, referred to as A-profiles here, often approximated by subtractions between moist adiabats. This study finds that differences between an idealized A-profile based on moist-static energy conservation and temperature perturbations derived from entraining and non-entraining parcel computations are modest under convective conditions—deep convection mostly occurs when lower troposphere is close to saturation, thus minimizing the impact of entrainment on tropospheric temperature. Simple calculations with pseudo-adiabatic perturbations about the observed profile thus provide useful baseline A-profiles.
    We compare the first EOF mode of tropospheric temperature (TEOF1) from the ERA-Interim reanalysis and AIRS retrievals below the level of neutral buoyancy (LNB) with these A-profiles. The TEOF1 profiles with high LNB, typically above 400 hPa, yield high vertical spatial correlation (~0.9) with A-profiles, indicating that tropospheric temperature perturbations tend to be consistent with the quasi-equilibrium assumption where the environment is favorable to deep convection. On the contrary, lower correlation tends to occur in regions with low climatological LNB, less favorable to deep convection. We also find that excluding temperature profiles with low LNB significantly increases the tropical mean vertical spatial correlation.
    The temperature perturbations near LNB exhibit negative deviations from the A-profiles—the convective cold top phenomenon—with greater deviation for higher LNB. One can observe that in regions with lower correlation, the deviation of TEOF1 from A-profile shows an S-like shape beneath 600 hPa, usually accompanied by a drier lower troposphere. All the above research findings are robust across a wide range of timescales from daily to monthly, although the vertical spatial correlation and TEOF1 explained variance tend to decrease on short timescales.

    Curriculum Vitae i 摘要 iv Abstract v Acknowledgements vi Contents ix List of Figures x List of Tables xv Chapter 1 Introduction 1 Chapter 2 Data and Methodology 5 2.1 Datasets 5 2.2 Theoretical A-profile 5 2.3 Level of neutral buoyancy 8 2.4 Leading EOF mode of observed temperature variation 8 2.5 Entrainment assumptions and plume temperature variation 9 Chapter 3 Statistics of A-profile, plume temperature variation and LNB 12 3.1 Vertical Distribution between A-profile and plume temperature perturbations for entrainment sensitivity test 12 3.2 Geographical climatologies of LNB and A-profile 16 Chapter 4 Leading mode of temperature perturbation approximated by A-profile 18 4.1 Vertical structures categorized by LNB 18 4.2 Geographical pattern of vertical spatial correlation 22 4.3 Regional difference in vertical profiles 30 Chapter 5 Temperature profile correlations excluding cases with low LNB 33 5.1 Geographical change 33 5.2 Explanation for existing low correlation 35 Chapter 6 Discussion and Conclusions 42 References 45 Appendix A: Temporal variability of A-profile and LNB 52 Appendix B: Results from unpresented data 59 Appendix C: Repeated analysis of the free troposphere 78

    Adames, Á. F., S. W. Powell, F. Ahmed, V. C. Mayta, and J. D. Neelin, 2021: Tropical Precipitation Evolution in a Buoyancy-Budget Framework. Journal of the Atmospheric Sciences, 78, 509-528, doi: https://doi.org/10.1175/JAS-D-20-0074.1
    Ahmed, F., and J. D. Neelin, 2018: Reverse Engineering the Tropical Precipitation–Buoyancy Relationship. Journal of the Atmospheric Sciences, 75, 1587-1608, doi: https://doi.org/10.1175/JAS-D-17-0333.1
    ——, 2021: Protected Convection as a Metric of Dry Air Influence on Precipitation. Journal of Climate, 34, 3821-3838, doi: https://doi.org/10.1175/JCLI-D-20-0384.1
    AIRS Science Team/Joao Teixeira 2013a: AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS+AMSU) 1 degree x 1 degree V006 (AIRX3STD), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 02 August 2018, doi: https://doi.org/10.5067/Aqua/AIRS/DATA301
    ——, 2013b: AIRS/Aqua L3 Daily Support Product (AIRS+AMSU) 1 degree x 1 degree V006, Greenbelt (AIRX3SPD), MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 02 July 2021, doi: https://doi.org/10.5067/Aqua/AIRS/DATA304
    ——, 2013c: AIRS/Aqua L3 Monthly Support Product (AIRS+AMSU) 1 degree x 1 degree V006 (AIRX3SPM), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 02 July 2021, doi: https://doi.org/10.5067/Aqua/AIRS/DATA322
    ——, 2013d: AIRS/Aqua L3 Monthly Standard Physical Retrieval (AIRS+AMSU) 1 degree x 1 degree V006 (AIRX3STM), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 02 August 2018, doi: https://doi.org/10.5067/Aqua/AIRS/DATA319
    Arakawa, A., 2004: The Cumulus Parameterization Problem: Past, Present, and Future. Journal of Climate, 17, 2493-2525, doi: https://doi.org/10.1175/1520-0442(2004)017<2493:Ratcpp>2.0.Co;2
    Arakawa, A., and W. H. Schubert, 1974: Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I. Journal of Atmospheric Sciences, 31, 674-701, doi: https://doi.org/10.1175/1520-0469(1974)031<0674:Ioacce>2.0.Co;2
    Betts, A. K., 1982: Saturation Point Analysis of Moist Convective Overturning. Journal of Atmospheric Sciences, 39, 1484-1505, doi: https://10.1175/1520-0469(1982)039<1484:Spaomc>2.0.Co;2
    Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quarterly Journal of the Royal Meteorological Society, 112, 677-691, doi: https://doi.org/10.1002/qj.49711247307
    Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nature Geoscience, 8, 261-268, doi: https://doi.org/10.1038/ngeo2398
    Bretherton, C. S., and A. H. Sobel, 2003: The Gill Model and the Weak Temperature Gradient Approximation. Journal of the Atmospheric Sciences, 60, 451-460, doi: https://doi.org/10.1175/1520-0469(2003)060<0451:TGMATW>2.0.CO;2
    Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between Water Vapor Path and Precipitation over the Tropical Oceans. Journal of Climate, 17, 1517-1528, doi: https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2
    Brown, R. G., and C. S. Bretherton, 1997: A Test of the Strict Quasi-Equilibrium Theory on Long Time and Space Scales. Journal of the Atmospheric Sciences, 54, 624-638, doi: https://doi.org/10.1175/1520-0469(1997)054<0624:Atotsq>2.0.Co;2
    Bryan, G. H., and J. M. Fritsch, 2004: A Reevaluation of Ice–Liquid Water Potential Temperature. Monthly Weather Review, 132, 2421-2431, doi: https://doi.org/10.1175/1520-0493(2004)132<2421:Aroiwp>2.0.Co;2
    Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553-597, doi: https://doi.org/10.1002/qj.828
    Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quarterly Journal of the Royal Meteorological Society, 130, 3055-3079, doi: https://doi.org/10.1256/qj.03.130
    Durre, I., X. Yin, R. Vose, S. Applequiest, and J. Arnfield, 2016: Integrated Global Radiosonde Archive (IGRA) version 2. NOAA/National Centers for Environmental Information, accessed 29 August 2018, doi: https://doi.org/10.7289/V5X63K0Q
    Emanuel, K. A., J. David Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quarterly Journal of the Royal Meteorological Society, 120, 1111-1143, doi: https://doi.org/10.1002/qj.49712051902
    Fueglistaler, S., C. Radley, and I. M. Held, 2015: The distribution of precipitation and the spread in tropical upper tropospheric temperature trends in CMIP5/AMIP simulations. Geophysical Research Letters, 42, 6000-6007, doi: https://doi.org/10.1002/2015GL064966
    Holloway, C. E., and J. D. Neelin, 2007: The Convective Cold Top and Quasi Equilibrium. Journal of the Atmospheric Sciences, 64, 1467-1487, doi: https://doi.org/10.1175/jas3907.1
    ——, 2009: Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection. Journal of the Atmospheric Sciences, 66, 1665-1683, doi: https://doi.org/10.1175/2008JAS2806.1
    ——, 2010: Temporal Relations of Column Water Vapor and Tropical Precipitation. Journal of the Atmospheric Sciences, 67, 1091-1105, doi: https://doi.org/10.1175/2009JAS3284.1
    Houze Jr., R. A., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Reviews of Geophysics, 53, 994-1021, doi: https://doi.org/10.1002/2015RG000488
    Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael, and F. Hossain, Eds., Springer Netherlands, 3-22.
    Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology, 8, 38-55, doi: https://doi.org/10.1175/JHM560.1
    Kuang, Z., 2008: Modeling the Interaction between Cumulus Convection and Linear Gravity Waves Using a Limited-Domain Cloud System–Resolving Model. Journal of the Atmospheric Sciences, 65, 576-591, doi: https://doi.org/10.1175/2007JAS2399.1
    Kuo, H. L., 1974: Further Studies of the Parameterization of the Influence of Cumulus Convection on Large-Scale Flow. Journal of Atmospheric Sciences, 31, 1232-1240, doi: https://doi.org/10.1175/1520-0469(1974)031<1232:Fsotpo>2.0.Co;2
    Kuo, Y.-H., J. D. Neelin, and C. R. Mechoso, 2017: Tropical Convective Transition Statistics and Causality in the Water Vapor–Precipitation Relation. Journal of the Atmospheric Sciences, 74, 915-931, doi: https://doi.org/10.1175/JAS-D-16-0182.1
    Kuo, Y.-H., K. A. Schiro, and J. D. Neelin, 2018: Convective Transition Statistics over Tropical Oceans for Climate Model Diagnostics: Observational Baseline. Journal of the Atmospheric Sciences, 75, 1553-1570, doi: https://doi.org/10.1175/JAS-D-17-0287.1
    Lin, J.-L., T. Qian, T. Shinoda, and S. Li, 2015: Is the Tropical Atmosphere in Convective Quasi-Equilibrium? Journal of Climate, 28, 4357-4372, doi: https://doi.org/10.1175/JCLI-D-14-00681.1
    Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated Climatology of a General Circulation Model with a Hydrologic Cycle. Monthly Weather Review, 93, 769-798, doi: https://doi.org/10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2
    Neelin, J. D., and I. M. Held, 1987: Modeling Tropical Convergence Based on the Moist Static Energy Budget. Monthly Weather Review, 115, 3-12, doi: https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2
    Neelin, J. D., and J.-Y. Yu, 1994: Modes of Tropical Variability under Convective Adjustment and the Madden–Julian Oscillation. Part I: Analytical Theory. Journal of Atmospheric Sciences, 51, 1876-1894, doi: https://doi.org/10.1175/1520-0469(1994)051<1876:Motvuc>2.0.Co;2
    Neelin, J. D., and N. Zeng, 2000: A Quasi-Equilibrium Tropical Circulation Model—Formulation. Journal of the Atmospheric Sciences, 57, 1741-1766, doi: https://doi.org/10.1175/1520-0469(2000)057<1741:Aqetcm>2.0.Co;2
    Neelin, J. D., O. Peters, J. W.-B. Lin, K. Hales, and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: observational constraints for stochastic convective schemes in climate models. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366, 2579-2602, doi: https://doi.org/doi:10.1098/rsta.2008.0056
    Neggers, R. A. J., J. D. Neelin, and B. Stevens, 2007: Impact Mechanisms of Shallow Cumulus Convection on Tropical Climate Dynamics. Journal of Climate, 20, 2623-2642, doi: https://doi.org/10.1175/jcli4079.1
    Nie, J., W. R. Boos, and Z. Kuang, 2010: Observational Evaluation of a Convective Quasi-Equilibrium View of Monsoons. Journal of Climate, 23, 4416-4428, doi: https://doi.org/10.1175/2010JCLI3505.1
    O'Gorman, P. A., and M. S. Singh, 2013: Vertical structure of warming consistent with an upward shift in the middle and upper troposphere. Geophysical Research Letters, 40, 1838-1842, doi: https://doi.org/10.1002/grl.50328
    Peng, J., H. Zhang, and Z. Li, 2014: Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations. Advances in Atmospheric Sciences, 31, 593-603, doi: https://doi.org/10.1007/s00376-013-3055-6
    Raymond, D. J., and M. J. Herman, 2011: Convective quasi-equilibrium reconsidered. Journal of Advances in Modeling Earth Systems, 3, doi: https://doi.org/10.1029/2011MS000079
    Sahany, S., J. D. Neelin, K. Hales, and R. B. Neale, 2012: Temperature–Moisture Dependence of the Deep Convective Transition as a Constraint on Entrainment in Climate Models. Journal of the Atmospheric Sciences, 69, 1340-1358, doi: https://doi.org/10.1175/jas-d-11-0164.1
    Santer, B. D., and Coauthors, 2005: Amplification of Surface Temperature Trends and Variability in the Tropical Atmosphere. Science, 309, 1551-1556, doi: https://doi.org/10.1126/science.1114867
    Savazzi, A. C. M., C. Jakob, and A. P. Siebesma, 2021: Convective Mass-Flux From Long Term Radar Reflectivities Over Darwin, Australia. Journal of Geophysical Research: Atmospheres, 126, e2021JD034910, doi: https://doi.org/10.1029/2021JD034910
    Schiro, K. A., F. Ahmed, S. E. Giangrande, and J. D. Neelin, 2018: GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales. Proceedings of the National Academy of Sciences, 115, 4577-4582, doi: https://doi.org/10.1073/pnas.1719842115
    Siebesma, A. P., and Coauthors, 2003: A Large Eddy Simulation Intercomparison Study of Shallow Cumulus Convection. Journal of the Atmospheric Sciences, 60, 1201-1219, doi: https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2
    Singh, M. S., and P. A. O'Gorman, 2013: Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophysical Research Letters, 40, 4398-4403, doi: https://doi.org/10.1002/grl.50796
    Singh, M. S., R. A. Warren, and C. Jakob, 2019: A Steady-State Model for the Relationship Between Humidity, Instability, and Precipitation in the Tropics. Journal of Advances in Modeling Earth Systems, 11, 3973-3994, doi: https://doi.org/10.1029/2019MS001686
    Sobel, A. H., and J. D. Neelin, 2006: The boundary layer contribution to intertropical convergence zones in the quasi-equilibrium tropical circulation model framework. Theoretical and Computational Fluid Dynamics, 20, 323-350, doi: https://doi.org/10.1007/s00162-006-0033-y
    Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The Weak Temperature Gradient Approximation and Balanced Tropical Moisture Waves. Journal of the Atmospheric Sciences, 58, 3650-3665, doi: https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2
    Steiner, A. K., and Coauthors, 2020: Observed Temperature Changes in the Troposphere and Stratosphere from 1979 to 2018. Journal of Climate, 33, 8165-8194, doi: https://doi.org/10.1175/JCLI-D-19-0998.1
    Stevens, B., 2005: ATMOSPHERIC MOIST CONVECTION. Annual Review of Earth and Planetary Sciences, 33, 605-643, doi: https://doi.org/10.1146/annurev.earth.33.092203.122658
    Taszarek, M., J. T. Allen, M. Marchio, and H. E. Brooks, 2021: Global climatology and trends in convective environments from ERA5 and rawinsonde data. npj Climate and Atmospheric Science, 4, 35, doi: https://doi.org/10.1038/s41612-021-00190-x
    Tompkins, A. M., 2001: Organization of Tropical Convection in Low Vertical Wind Shears: The Role of Water Vapor. Journal of the Atmospheric Sciences, 58, 529-545, doi: https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2
    Xu, K.-M., and K. A. Emanuel, 1989: Is the Tropical Atmosphere Conditionally Unstable? Monthly Weather Review, 117, 1471-1479, doi: https://doi.org/10.1175/1520-0493(1989)117<1471:Ittacu>2.0.Co;2
    Yano, J.-I., and R. S. Plant, 2012: Convective quasi-equilibrium. Reviews of Geophysics, 50, doi: https://doi.org/10.1029/2011RG000378
    Yano, J.-I., and R. S. Plant, 2016: Generalized convective quasi-equilibrium principle. Dynamics of Atmospheres and Oceans, 73, 10-33, doi: https://doi.org/10.1016/j.dynatmoce.2015.11.001
    Yu, J.-Y., and J. D. Neelin, 1997: Analytic Approximations for Moist Convectively Adjusted Regions. Journal of the Atmospheric Sciences, 54, 1054-1063, doi: https://doi.org/10.1175/1520-0469(1997)054<1054:Aafmca>2.0.Co;2
    Zhang, G. J., 2009: Effects of entrainment on convective available potential energy and closure assumptions in convection parameterization. Journal of Geophysical Research: Atmospheres, 114, doi: https://doi.org/10.1029/2008JD010976

    QR CODE
    :::