跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳煥元
Huan-Yuan Chen
論文名稱: 褐煤重液離心熱模擬成熟參數研究
A study of simulated thermal maturation from DGC lignite
指導教授: 蔡龍珆
Louis Loung-Yie Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 67
中文關鍵詞: 熱模擬熱裂分析熱成熟度
外文關鍵詞: thermal simulation, Rock-Eval pyrolysis, thermal maturation
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地球化學在生油材料的油氣潛能評估中一向佔有重要地位,在自然環境中不容易找到不同成熟度卻又有相同沉積材料與保存環境的煤,因此,可利用熱模擬方式將相同煤樣模擬至不同成熟度。熱模擬是一種研究油氣生成的有效方式,在實驗室中利用控制溫度的方式模擬地質環境,進而評估生油岩的油氣潛能。本研究透過比重離心方法富集低成熟度(Ro = 0.39%)褐煤之分離材料,進行200℃、250℃、300℃、350℃、450℃、500℃、550℃之熱模擬溫度,再將熱模擬完成的樣本與原始煤樣進行熱裂分析、煤素質組成分析、鏡煤素反射率量測等實驗,透過鏡煤素反射率、熱裂分析、油氣產率評估生油潛能,顯示在熱模擬溫度350℃附近生油潛能最高,其對應之鏡煤素反射率為1.35%,Tmax為451℃及產率指數為0.25,此結果與傳統油窗範圍相符。而熱模擬溫度350℃後,Tmax值、產率指數、總油產率皆有大幅度的變化,熱模擬溫度350℃附近可能是熱成熟度的重要轉折點。此外,在高成熟度區域,出現S1高於S2的現象,這可能為碳氫化合物受高溫熱成熟時發生的脫附現象。


    Geochemistry plays an important role in hydrocarbon potential assessment of source rocks. In addition, thermal simulation provides an effective way to evaluate the generation of oil/gas from kerogen. This evaluation is performed under different controlled temperature in laboratory so as to simulate different geological and thermal environment. Liptinitic material were enriched by density centrifuge separation of a low maturity (Ro = 0.39%) lignite from China. 200℃, 250℃, 300℃, 350℃, 450℃, 500℃, 550℃ were then simulated in this study. Rock-Eval pyrolysis, vitrinite reflectance and maceral composition were examined after simulation. The results indicate the highest hydrocarbon potential occurred at 350℃, with Ro = 1.35%, Tmax = 450℃ and PI = 0.25, cope with the traditional oil window. Furthermore, Tmax, PI and oil yield exhibit significant change at 350℃, which implies a threshold or turning point in the process at thermal maturation. Finally, S1 > S2 in overmatured samples, which can be attributed to the desorption of hydrocarbon under high temperature.

    摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 vii 符號說明 viii 一、 緒論 1 1-1 研究動機與目的 1 1-2 樣本介紹 1 1-2-1 地質背景 2 1-2-2 煤層簡介 3 1-2-3 分析數據 3 1-3 內文概述 5 二、 前人研究與文獻回顧 6 2-1 煤岩學 6 2-1-1 煤的分類 6 2-1-2 油母質分類 9 2-2 有機物成熟度 12 2-2-1 鏡煤素反射率 12 2-2-2 熱裂分析 15 2-3 重液離心分離煤素質 20 2-4 熱模擬 21 三、 研究方法 23 3-1 富集工作 23 3-1-1 比重液調配 23 3-1-2 煤素質分離 25 3-2 熱模擬 26 3-3 煤餅 28 3-3-1 煤餅製作 28 3-3-2 煤餅拋光 30 3-4 煤素質組成分析 32 3-5 鏡煤素反射率測量 33 3-6 熱裂分析 36 四、 結果與討論 39 4-1 煤素質成分分析結果 39 4-2 鏡煤素反射率結果 40 4-3 熱裂分析結果 41 4-4 常規熱壓模擬實驗結果 47 五、 結論與建議 48 5-1 結論 48 5-2 實驗問題與未來展望 49 參考文獻 50

    ﹝1﹞ Horton, H., “Separation of coals into fractions of different densities”, Fuel, Vol. 31, pp. 396-400, 1952.
    ﹝2﹞ Monthioux M., Landais P., Monin J. C., “Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia”, Org. Geochem, Vol. 8, 4, pp. 275-292, 1985.
    ﹝3﹞ http://mapofroc.pixnet.net/album/photo/101570646
    ﹝4﹞ 王建中,「昭通盆地上第三系褐煤煤層氣資源勘探前景初步評價」,中國煤層氣,第7卷第2期,3~6頁,2010年4月。
    ﹝5﹞ 昭通市商務局,「專題」昭通市的褐煤資源 (三) 煤層和煤質,2006年3月17日,取自 雲南昭通商務之窗 http://zhaotong.mofcom.gov.cn/。
    ﹝6﹞ 何屏,張緒祎,尹承緒,賈九民,喻依兆,郭森魁,「昭通褐煤的乾燥、破碎及其粒度分析研究」,昆明理工大學學報,第27卷第5期,45~47頁,2002年10月。
    ﹝7﹞ 董雲超,「淺談昭通褐煤盆地煤層氣資源勘探前景」,雲南煤炭,2012年第3期。
    ﹝8﹞ 遲姚玲,李術元,岳長濤,丁康樂,「昭通褐煤及其低溫熱解產物的性質研究」,石油大學學報,第29卷第2期,2005年。
    ﹝9﹞ Ting, F. T. C., “Petrographic techniques in coal analysis”, Analytical Methods for Coal and Coal Products., VolumeⅠ, p. 3-26, Karr, C., Jr.(ed.), Academic Press, Inc., New York, 1978.
    ﹝10﹞ Stopes, M. C., “On the petrology of banded bituminous coals”, Fuel, Vol. 14, pp. 4-13, 1935.
    ﹝11﹞ Stach, E., Mackowsky, M-Th., Teichmüller, M., Taylor, G. H., Chandra, D. and Teichmüller, R., Stach’s Textbook of Coal Petrology, 3rd ed., Gebruder Borntraeger, Berlin Stuttgart, 1982.
    ﹝12﹞ 孫立中,「抑制鏡煤素反射率隻量測原因─以分離台灣裕峰煤樣為例」,國立中央大學地球物理研究所博士論文,民國89年7月。
    ﹝13﹞ Berger, I. A., “kerogen”, McGraw Hill encyclopedia of science and technology, New York, McGraw Hill, 1961.
    ﹝14﹞ Tissot, B. P. and Welte, D. H., Petroleum formation and occurrence: a new approach to oil and gas exploration, Springer-Verlag, Berlin Heidelberg, 1984.
    ﹝15﹞ Burgess, J. D., “Microscopic examination of kerogen (dispersed organic matter) in petroleum exploration”, Geol. Soc. Am., Special Paper 153, pp. 19-30, 1974.
    ﹝16﹞ van Krevelen, D. W., Coal, Elsevier scientific publishing company, 1961.
    ﹝17﹞ Killop, S. D. and Killop V. J., An introduction to organic geochemistry, Longman Group UK Ltd., English, 1993.
    ﹝18﹞ ASTM, Classification of coals by rank, D388-77, 1977.
    ﹝19﹞ Hunt, J. M., Petroleum geochemistry and geology, San Francisco : W.H. Freeman, 1979.
    ﹝20﹞ http://www-odp.tamu.edu/publications/tnotes/tn30/tn30_f5.htm
    ﹝21﹞ Peters, K.E., Cassa, M.R., “Applied source-rock geochemistry”, In: Magoon, L.B., Dow, W.G. (Eds.), The Petreleum System – From Source to Trap, American Association of Petroleum Geologists Memoir 60, pp. 93 – 120, 1994.
    ﹝22﹞ Dyrkacz, G. R., Bloomquist, C. A. and Rustic, L., “High resolution density variations of coal macerals”, Fuel, Vol. 63, pp. 1367-1373, 1984.
    ﹝23﹞ Dormans, H. N. M., Huntjens, F. J. and van Krevelen, D. W., “Chemical structure and properties of coal. 20. Composition of the individual macerals (vitrinites, fusinites, micrinites and exinites)”, Fuel, Vol. 36, pp. 321-339, 1957.
    ﹝24﹞ Crelling, J. C., "Targeting single coal macerals with density gradient centrifugation experiments", Preprints of Papers-American Chemical Society Division Fuel Chemistry, Vol. 39, pp. 209-209, 1994.
    ﹝25﹞ Dyrkacz, G. R., Bloomquist, C. A. A., Ruscic, L. and Horwitz, E. P., “Variation in properties of coal macerals elucidated by density gradient separation”, ACS Symposium Series, Vol. 252, 1984.
    ﹝26﹞ Jorjani, E., Esmaeili, S., & Tayebi Khorami, M., “The effect of particle size on coal maceral group’s separation using Flotation”, Fuel, Vol. 144, pp. 10-15, 2013.
    ﹝27﹞ Dyrkacz, G. R. and Horwitz, E. P., “Separation of coal macerals”, Fuel, Vol. 61, pp. 3-12, 1982.
    ﹝28﹞ Poe, S. H., Taulbee, D. N. & Keogh, R. A., “Density gradient centrifugation of --100 mesh coal: An alternative to using micronized samples for maceral separation”, Org. Geochem., Vol. 14, NO. 3, pp. 307-313, 1989.
    ﹝29﹞ 陳榮書,石油與天然氣地質學,中國地質大學出版社,1994年。
    ﹝30﹞ Tissot, B., Durand, B., Espitalie, J. and Combaz, A., “Influence of the nature and diagenesis of organic matter in formation of petroleum”, Am. Assoc. Petrol. Geologists Bull., Vol. 58, pp. 499-506, 1974.
    ﹝31﹞ 張雅頌,「鏡煤素反射率抑制問題與熱模擬之探討」,國立中央大學應用地質研究所碩士論文,2008年。
    ﹝32﹞ Lewan, M. D., Winters, J. C., McDonald, J. H., “Generation of oil-like pyrolyzates from organic-rich shale”, Science, Vol. 203, pp. 897-899, 1979.
    ﹝33﹞ Ma, Y., Li, S., Wang, J., Fang, C., “Kinetics of oil shale pyrolysis under saturated aqueous medium”, CIESC Journal, Vol. 61, NO. 9, pp. 2474-2479, 2010.
    ﹝34﹞ 孫立中,「煤成油的顯微組分之研究」,國科會99年度研究報告,2010年。
    ﹝35﹞ ASTM, Standard D-2797, ASTM Standard Manual, Part 26, pp. 350~354.
    ﹝36﹞ ASTM, Standard D-2797, Microscopical determination of volume percent of physical components in a polished specimen of coal, ASTM, Philadelphia, Pa, 1980.
    ﹝37﹞ Bustin, R. M., “Quantifying macerals: some statistical and practical considerations”, International Journal of Coal Geology, Vol. 17, pp. 213-238, 1991.
    ﹝38﹞ Davis, A. The reflectance of coal. In: Karr, C., Jr. (ed.): Analytical Methods for Coal and Coal Products. Academic Press, Inc., New York, pp. 27-81, 1978.
    ﹝39﹞ 中國國家能源局,SY/T 5124-2012 沉積岩中鏡質體反射率測定方法,中華人民共和國石油天然氣行業標準,2012。
    ﹝40﹞ 謝小敏,騰格爾,仰雲峰,胡明霞,邊立曾,「Leica QWin_V3圖像處理軟件在烴源岩有機岩石學定量分析中的應用」,石油實驗地質,第35卷第4期,2013年7月。
    ﹝41﹞ Cited in, Waples, D. W., Geochemistry in petroleum exploration, D. Reidel Publishing Co. Dordrecht Boston Lancaster, 1985.
    ﹝42﹞ 中華人民共和國國家質量監督檢驗檢疫總局,中國國家標準化管理委員會,GB/T 18602-2012 岩石熱解分析,中華人民共和國國家標準,2012。
    ﹝43﹞ Bustin, R. M. and Guo, Y., “Abrupt changes (jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals”, International Journal of Coal Geology, Vol. 38, pp. 237-260, 1999.

    QR CODE
    :::