跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾勝揚
Sheng-Yang Zeng
論文名稱: 磷化銦鎵/砷化鎵平面摻雜異質接面雙極性電晶體之研製
磷化銦鎵/砷化鎵平面摻雜異質接面雙極性電晶體之研製
指導教授: 李清庭
Ching-Ting Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 90
語文別: 中文
論文頁數: 87
中文關鍵詞: 磷化銦鎵砷化鎵平面摻雜脈衝摻雜脈波摻雜原子層摻雜突尖型摻雜歐姆接觸異質接面異質接面雙極性電晶體
外文關鍵詞: atomic layer doping, pulse doping, delta doping, planar doping, GaAs, InGaP, heterojunction, HBT, spike doping, Ohmic contact
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文利用分子束磊晶(Molecular Beam Epitaxy, MBE)成長磷化銦鎵/砷化鎵平面摻雜異質接面雙極性電晶體(InGaP/GaAs δ doped HBT),利用平面摻雜(δ doped)技術提昇基極的金屬-半導體之歐姆接觸特性,降低基極之串聯阻抗,進而提高功率增益截止頻率或最大振盪頻率(fmax),並利用平面摻雜技術對基極區域電位的調變(potential modulation),內建基極區域之加速電場,降低載子穿越基極之傳輸時間,進而提高截止頻率(cut-off frequency, ft)。
    首先比較具有空間層(spacer)及平面摻雜的磷化銦鎵/砷化鎵異質接面雙極性電晶體(InGaP/GaAs HBT)與一般磷化銦鎵/砷化鎵異質接面雙極性電晶體之直流特性差異,並針對基極之歐姆接觸做進一步的探討。
    在基極與未摻雜(undoped)之空間層間加入平面摻雜,調變基極金屬電極與基極半導體間之電位與雜質濃度,可以有效改善基極金屬電極的特徵電阻值(ρC),其值約在10-4 ~ 10-5 (Ω-cm2),證明平面摻雜對金屬與半導體接面歐姆接觸特性有顯著的提昇。
    由射極-基極接面的電特性量測,具有空間層及平面摻雜之磷化銦鎵/砷化鎵異質接面雙極性電晶體(A結構)之起始電壓(Vturn-on)約1.45V,而一般不具空間層及平面摻雜的磷化銦鎵/砷化鎵異質接面雙極性電晶體(B結構)只有1.1V,可了解平面摻雜對此異質接面具有顯著的電位調變作用;此外,A結構明顯有較高的漏電流,在-2V時約數十個nA,而B結構只有數個nA。
    於梗美樂-普恩繪圖(Gummel-Poon Plot)量測中,由於A結構之射極-基極有較大的漏電流,所以其電流增益約只有4,而B結構之電流增益約40;A結構主要是靠載子穿隧(tunneling)效應為電流成分,故理想因子η > 2,而B結構η接近於1,是以晶體復合電流(IB,bulk)為主要成分。
    而在共射極電流增益(IC-VCE)量測中,兩個結構都不受歐利效應(Early effect)之影響,表示基極-集極接面濃度分佈相當陡峭(abrupt)。萃取補償電壓(VCE,offset)可以得到A結構約0.55V,B結構約0.15V,平面摻雜之電位調變在此得到應證。


    目錄 圖目錄 III 表目錄 VI 第一章 導論 01 1.1 研究動機 01 1.2 異質接面雙極性電晶體簡介 03 第二章 異質接面雙極性電晶體的基本原理及平面摻雜技術與應用 05 2.1 異質接面雙極性電晶體的基本原理 05 2.2 平面摻雜技術的基本原理 10 2.2-1 平面摻雜基本觀念 10 2.2-2 平面摻雜之成長技術 11 2.3 平面摻雜技術的應用 14 2.3-1 電位和電場的分析 15 2.3-2 平面摻雜於異質接面雙極性電晶體之應用 17 第三章 異質接面雙極性電晶體結構與製作流程 19 3.1 異質接面雙極性電晶體的磊晶結構 19 3.2 異質接面雙極性電晶體的製程步驟 23 第四章 異質接面雙極性電晶體元件特性的量測與分析 30 4.1 異質接面雙極性電晶體的直流特性量測 30 4.2-1 特徵接觸電阻的量測與分析 31 4.2-2 射極與基極異質接面的量測與分析 32 4.2-3 基極與集極接面的量測與分析 33 4.2-4 梗美樂-普恩繪圖量測與分析 34 4.2-5 共射極輸出特性及補償電壓之量測與分析 35 第五章 結論與未來展望 38 參考資料 41

    參考資料:
    [1] H. Kroemer, “Heterostructure bipolar transistors and integrated
    circuit,” Proc. IEEE, vol. 70, pp. 13-25, 1982.
    [2] H. Kroemer, “Heterostructure bipolar transistors: What should we
    build?,” J. Vac. Sci. Tech., vol. B1, pp. 126-130, 1983.
    [3] P. M. Asbeck, Mau-Ching, J. A. Higgins, N. H. Sheng, G. J. Sullivan, and
    K. C. Wang, “GaAlAs/GaAs Heterojunction bipolar transistors: Issues and
    prospects for application,” IEEE Trans. Electron Devices, vol. 36, no.
    10, pp. 2032-2042, 1989.
    [4] S. M. Sze, High-speed Semiconductor Devices, Wiley, New York, 1990.
    [5] G. O. Ladd and D. L. Feucht, “Performance potential of high-frequency
    Heterojunction transistor,” IEEE Trans. Electron Devices, vol. 17, pp.
    413-420, 1970.
    [6] W. Liu and S. K. Fan, “Near-idea I-V characteristics of GaInP/GaAs
    Heterojunction Bipolar Transistor,” IEEE Electron Device Lett., EDL-13,
    pp.501-512, 1992.
    [7] M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long, and D. I. Babic, “
    Determination of valence and conduction-band discontinuities at the (Ga,
    In)P/GaAs Heterojunction by C-V profiling,” J. Appl.Phys., vol. 61, pp.
    643-648, 1987.
    [8] W. Liu and S. K. Fan, T. S. Kim, E. A. Beam III, D. B. Davito, “Current
    Transport Mechanism in GaInP/GaAs Heterojunction Bipolar Transistor,”
    IEEE Trans. Electron Devices, vol. 40, pp. 1378-1382, August 1993.
    [9] J. R. Loyhian, J. M. Kuo, F. Ren, and S. J. Pearton, “Plasma and wet
    chemical etching of In0.5Ga0.5P,” J. Electronic Materials, vol. 21, pp.
    441-445, 1992.
    [10] J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibber,
    “Ultralow recombination velocity at Ga0.5In0.5P heterointerfaces,” Appl.
    Phys. Lett., vol. 55, pp. 1208-1210, 1989.
    [11] L. W. Laih, S. Y. Cheng, W. C. Wang, P. H. Lin, J. Y. Chen, W. C. Liu,
    and W. Lin, “High-performance InGaP/InGaAs/GaAs step-compositioned doped-
    channel field-effect transistor (SDCFET),” IEE Electron. Lett., vol. 33,
    NO. 1, pp. 98-99, 1997.
    [12] W. Liu, “Fundamentals of III-V Devices,” Wiley, New York, pp. 146-150,
    1999.
    [13] B. Willén, U. Westergren, and H. Asonen, “High-Gain, High-Speed
    InP/InGaAs Double-Heterojunction Bipolar Transistors with a Step-Graded
    Base-Collector Heterojunction,” IEEE Electron Device Lett., vol. 16, NO.
    11, pp. 479-481, Nov. 1995.
    [14] William Liu ,”Ideality Factor of Extrinsic Base Surface Recombination
    Current in AlGaAs/GaAs Heterojunction Bipolar Transistors”, IEEE
    Electron Letters 13th, vol. 28 ,NO. 4, pp. 379-380,February 1992.
    [15] William Liu, Edward Beam, Timothy Henderson, and Shou-Kong Fan,
    “Extrinsic Base Surface Passivation in GaInP/GaAs Heterojunction Bipolar
    Transistor,” IEEE Electron Device Letters, vol. 14, NO. 6, pp. 301-303,
    June 1993.
    [16] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface Recombination Current in
    InGaP/GaAs Heterostructure-Emitter Bipolar Transistors,” IEEE
    Transactions Electron Device, vol. 41, NO. 5, pp. 643-647, May 1994.
    [17] R. J. Malik, L. M. Lunardi, J. F. Walker, and R. W. Ryan, “A Planar-
    Doped 2D-Hole Gas Base AlGaAs/GaAs Heterojunction Bipolar Transistor
    Grown by Molecular Beam Epitaxy,” IEEE Electron Device Letters, vol. 9,
    NO. 1, pp. 7-9, January 1988.
    [18] K. W. Goossen, T. Y. Kuo, J. E. Cunningham, W. Y. Jan, Fan Ren, and C. G.
    Fonstad, “A Planarization of Emitter-Base Structure of Heterojunction
    Bipolar Transistors by Doping Selective Base Contact and Nonalloyed
    Emitter Contact,” IEEE Transaction on Electron Devices, vol. 38, NO. 11,
    pp. 2423-2426, November 1991.
    [19] T. Y. Kuo, J. E. Cunningham, K. W. Goossen, W. Y. Jan, C. G. Fonstad, and
    F. Ren, “Monolayer Be δ-Doped Heterostructure Bipolar Transistor
    Fabricated Using Doping Selective Base Contact,” Electronics Letters,
    vol. 26, NO. 15, 19th, pp. 1187-1188, July 1990.
    [20] K. W. Goossen, J. E. Cunningham, T. Y. Kuo, W. Y. Jan, and C. G. Fonstad,
    “Monolayer δ-doped heterojunction bipolar transistor characteristics from
    10 to 350K,” Appl. Phys. Lett., vol. 59, NO. 6, 5, pp.682-684, August
    1991.
    [21] J. R. Hayes, F. Capasso, A. C. Gossard, R. J. Malik, W. Wiegmann,
    “Bipolar transistor with graded band-gap base,” Electron. Lett., vol.
    19, pp. 410, 1983.
    [22] D. L. Miller, P. M. Asbeck, R. J. Anderson, and F. H. Eisen, “(GaAl)
    As/GaAs heterojunction bipolar transistor with graded composition in the
    base,” Electron. Lett., vol. 19, pp.367, 1983.
    [23] R. J. Malik et al., “High-gain, high frequency AlGaAs/GaAs graded band-
    gap base bipolar transistors with a Be diffusion setback layer in the
    base,” Appl. Phys. Lett., vol. 46, pp. 600, 1985.
    [24] B. F. Levine et al., “Measurement of high electron drift velocity in a
    submicron, heavily doped graded gap AlxGa1-xAs layer,” Appl. Phys.
    Lett., vol. 42, pp. 769, 1983.
    [25] J. I. Song, W. P. Hong, C. J. Palmstrom, B. P. Van der Gaag, and K. B.
    Chough, “Millimetre-wave InP/InGaAs Heterojunction bipolar transistors
    with a subpicosecond extrinsic delay time,” Electronics Letters, vol.
    30, NO. 5, 3rd, pp. 456-457, March 1994.
    [26] H. R. Chen, C. H. Huang, C. Y. Chang, C. P. Lee, K. L. Tsai, and J. S.
    Tsang, “Heterojunction Bipolar Transistors with Emitter Barrier Lowered
    by δ-Doping,” IEEE Electron Device Letters, vol. 15, NO. 8, pp. 286-288,
    August 1994.
    [27] W. C. Liu, H. J. Pan, S. Y. Cheng, W. C. Wang, J. Y. Chen, S. C. Feng,
    and K. H. Yu, “Applications of an In0.53Ga0.25Al0.22As/InP continuous-
    conduction-band structure for ultralow current operation transistors,”
    Appl. Phys. Lett., vol. 75, pp. 572-574, 1999.
    [28] P. C. Chang, A. G. Baca, N. Y. Li, X. M. Xie, H. Q. Hou, and E. Armour,
    “InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor,” Appl.
    Phys. Lett., vol. 76, pp. 2262-2264, 2000.
    [29] W. C. Liu, J. Y. Chen, W. C. Wang, S. C. Feng, K. H. Yu, J. H. Yan,
    “Design consideration of emitter-base junction structure for InGaP/GaAs
    heterojunction bipolar transistor,” Optoelectronic and Microelectronic
    Materials Devices, 1998. Proceedings. 1998 Conference on, pp. 246 –248,
    1999.
    [30] C. E. Chang, P. F. Chen, P. M. Asbeck, L. T. Tran, D. C. Streit, A. K.
    Oki, “Lightly doped emitter HBT for low-power circuits,” IEEE Microwave
    and Guided Wave Letters, vol. 7, NO. 11, pp. 377 –379, November 1997.
    [31] W. S. Lour, W. L. Chang, L. T. Hung, “Investigation of InGaP/GaAs single
    and double heterojunction bipolar transistors by doping spike,”
    Optoelectronic and Microelectronic Materials and Devices Proceedings,
    1996 Conference on, pp. 271-274, 1996.
    [32] C. E. Chang, P. M. Asbeck, L. T. Tran, D. C. Streit, , A. K. Oki, “Novel
    HBT structure for high ft at low current density,” Electron Devices
    Meeting, 1993. Technical Digest., International, pp. 795-798, 1993.
    [33] S. A. Stockman, A. W. Hanson, and G. E. Stillman, ”Growth of Carbon-
    Doped p-type InXGa1-XAs(0<X≦0.53)by Metalorganic Chemical Vapor
    Deposition,” Appl. Phys. Lett., vol. 60, NO. 8, pp. 2903-2905, June 1992.
    [34] S. R. Bahl, N. Moll, V. M. Robbins, H-C Kuo, B. G. Moser, and G. E.
    Stillman, “Be Diffusion in InGaAs/InP Heterojunction Bipolar
    Transistors,” IEEE Electron Device Lett., vol. 21, NO. 7, pp. 332-334,
    July 2000.
    [35] K. Hong and D. pavlidis, ”Heavily Carbon Doped InGaAs Lattice Matched to
    InP Grown by LP-MOCVD Using TMIn, TMGa and Liquid CCl4,” Indium
    Phosphide and Rleated Materials. Conference Proceedings., Seventh
    International Conference on, pp. 144-147, 1995.
    [36] K. Nagata, O. Nakajima, Y. Yamauchi, and T. Ishibasi, A new self-aligned
    structure AlGaAs/GaAs HBT for high speed digital circuirs, Gallium-
    Arsenide and Rel. Comp., Inst. Phys. Conf. Ser., NO. 79, pp. 589-596,
    1986.
    [37] P. M. Asbeck, D. L. Miller, R. J. Anderson, and F. H. Eisen,
    “GaAs/AlGaAs Heterojunction bipolar transistors with buried oxygen-
    implanted isolation layers,” IEEE Electron Device Lett., vol. EDL-5, pp.
    310-312,1984.
    [38] M. F. Chang, P. M. Asbeck, D. L. Miller, and K. Wang, “GaAs/AlGaAs
    Heterojunction bipolar transistors with a self-aligned substitutional
    emitter process,” IEEE Electron Device Lett. vol. EDL-7, pp. 8-9, 1986.
    [39] M. F. Chang, P. M. Asbeck, et al., “AlGaAs/GaAs Heterojunction bipolar
    transistors fabricated using self-aligned dual-lift-off process,” IEEE
    Electron Device Lett. vol. EDL-8, pp. 303-305, 1987.
    [40] G. K. Reeves and H. B. Harrison, IEEE Electron Device Letters, 3, 111
    (1982).
    [41] Ralph E. Williams, “Gallium Arsenide Processing Techniques”, 學風出版社
    (1983).
    [42] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, Oxford
    Science Publication.
    [43] DIETER K.SCHRODER,“Semiconductor Material and Device
    Characterization ”, John Wiley &Sons,INC.,1997.
    [44] K. W. Goossen, J. E. Cunningham, T. H. Chiu, D.A.B. Miller and D. S.
    Chemla, “Non-alloyed Al Ohmic Contact to GaAs For GaAs/Si Interconnect
    Compatibility”, IEEE IEDM 89, pp. 409-410, 1989.
    [45] Delong Cui, Dimitris Pavlidis, Fellow, IEEE, Shawn S. H. Hsu, and Andreas
    Eisenbach, “Comparison of DC High-Frequency Performance of Zinc-Doped
    and Carbon-Doped InP/InGaAs HBTs Grown by Metalorganic Chemical Vapor
    Deposition”, IEEE Transactions on Electron Devices, vol. 49, NO. 5, pp.
    725-732, May 2002.
    [46] T. Won, S. Iyer, S. Agarwala, and H. Morkoc, ”Collector Offset Voltage
    of Heterojunction Bipolar Transistors Grown by Molecular Beam Epitaxy,”
    IEEE Electron Device Lett., vol. 10, no. 6, pp.274-276, June. 1989.
    [47] Beng-Chye Lye, P. A. Houston, Ho-Kwang Yow, C. C. Button
    “GaInP/AlGaAs/GaInP Double Heterojunction Bipolar Transistors with Zero
    Conduction Band Spike at the Collector” IEEE Trans. Electron Devices,
    vol. 45, NO. 12, pp. 2417-2421, Dec. 1998.
    [48] Nicola Bovolon, Rüdiger Schultheis, Jan-Erik Müller, Peter Zwicknagl,
    Enrico Zanoni “Theoretical and Experimental Investigation of the
    Collector-Emitter Offset Voltage of AlGaAs/GaAs Heterojunction Bipolar
    Transistors” IEEE Trans. Electron Devices, Vol. 46, NO.4, pp. 622-627,
    April 1999.

    QR CODE
    :::