| 研究生: |
桂妤 Yu Kuei |
|---|---|
| 論文名稱: |
一個雙重功能的酵母菌 tRNA 合成酶之研究 Study of a bifunctional yeast tRNA synthetase of Candida albicans |
| 指導教授: |
王健家
Wang Chien-Chia |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 雙功能 、tRNA合成酶 、酵母菌 |
| 外文關鍵詞: | Candida albicans, bifunctional, alanyl-tRNA synthetase |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在 Saccharomyces cerevisiae 中, ALA1 可以同時解碼細胞質與粒線體的 alanyl-tRNA synthetase (AlaRS)。此一基因利用最靠近 mRNA 5’端的 AUG (即 AUG1) 轉譯出細胞質異構型,利用 AUG 1 上游的兩個重複密碼 ACG (-25) 與 ACG (-24) 轉譯出粒線體異構型。本論文中,我們選殖了 Candida albicans 的 ALA1 基因 (CaALA1),並針對這個基因的蛋白質轉譯及細胞內分布做進一步的研究,我們發現 CaALA1 可以同時取代 S. cerevisiae ALA1 基因的細胞質與粒線體功能,然而其基因表達的方式卻非常不同。首先我們發現 CaALA1 只轉錄一條 mRNA ,其 5’端位於 AUG1 上游的 24 個核苷酸處。再者, CaALA1 是利用其 mRNA 上的 AUG1 轉譯出一個同時具有粒線體與細胞質功能的蛋白質,而利用與 AUG1 相距八個密碼的 AUG9 轉譯出一個只具有細胞質功能的蛋白質異構型。進一步將此細胞的細胞質及粒線體分離,結果發現由 AUG1 做出的蛋白質可同時分布於細胞質及粒線體,相對地,由 AUG9 做出的蛋白質則只分布於細胞質,此結果與功能性分析完全一致。點突變的實驗結果顯示 CaALA1 的轉譯可能是透過 Leaky scanning 的方式進行,因此改變 AUG1 的週邊序列不但會影響 AUG1 的轉譯起始效率,也會影響 AUG9 的效率。據我們所知,這是在酵母菌中發現的第一個例子:一個 tRNA synthetase 可以同時跑到兩個不同的胞器中作用。
It was previously shown that the cytoplasmic and mitochondrial activities of alanyl-tRNA synthetase of Saccharomyces cerevisiae are provided by two translational products of ALA1, one initiates at the AUG codon closest to the 5’-end of its mRNA transcripts and the other at upstream in-frame redundant non-AUG codons (i. e., ACG(-25) and ACG(-24)). In this thesis, we report the cloning and characterization of a homologous gene from Candida albicans. Functional assays show that this gene can substitute for both the cytoplasmic and mitochondrial functions of ALA1 in S. cerevisiae; however, several points regarding the pattern of gene expression differ from mechanisms used to regulate expression of ScALA1. First, the results of 5’-RACE showed expression of only a single transcript whose 5’-end mapped to nucleotide position -24 relative to ATG1. However, this single transcript codes for two distinct protein isoforms through alternative initiation from two in-frame AUG triplets 8 codons apart. Complementation assays showed that the AUG1-initiated protein can complement for both cytoplasmic and mitochondrial activities of ScALA1, while the AUG9-initiated protein functions only in the cytoplasm. Fractionation assays also showed that the AUG1-initiated protein form can be partitioned in both compartments; however, the AUG9-initiated protein form was exclusively confined to the cytoplasm. Next, we tested whether the mechanism used by CaALA1 to initiate translation was due to “leaky scanning”. Therefore, a series of point mutations were introduced into the sequence context surrounding the first initiator. Results showed that the efficiencies of translation initiation by the two initiators could be influenced by changing the sequence context of AUG1, consistent with the leaky scanning model of translation initiation. To our knowledge, this appears to be the first example in yeast wherein a naturally occurring form of a tRNA synthetase can play roles in both compartments.
Abramczyk, D., Tchorzewski, M., Grankowski, N. (2003) Non-AUG translation initiation of mRNA encoding acidic ribosomal P2A protein in Candida albicans. Yeast 12: 1045-1052
Burbaum, J. J., Schimmel, P. (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J. Biol. Chem. 266:16965-8.
Carter, C. W. Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62: 715-748
Chang, K. J., and Wang, C. C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J. Biol. Chem. 279: 13778-13785
Chatton, B., Walter, P., Ebel, J. P., Lacroute, F., and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52-57.
Chiu, M. I., Mason, T. L., Fink, G. R. (1992) HTS1 encodes both the cytoplasmic and mitochondrial histidyl-tRNA synthetase of Saccharomyces cerevisiae: mutations alter the specificity of compartmentation. Genetics. 132: 987-1001
Cigan, A. M., Donahue, T. F. (1987) Sequence and structural features associated with translational initiator regions in yeast. Gene 59(1): 1-18.
Daum, G., Bohni, P. C., Schatz, G. (1982) Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J. Biol. Chem. 257:13028-33.
Dircks, L. K., Poyton, R. O. (1990) Overexpression of a leaderless form of yeast cytochrome c oxidase subunit Va circumvents the requirement for a leader peptide in mitochondrial import. Mol Cell Biol. 10:4984-6.
Felter, S., Diatewa, M., Schneider, C., and Stahl, A. J. (1981) Yeast mitochondrial and cytoplasmic valyl-tRNA synthetases. Biochem. Biophys. Res. Commun. 98: 727-734.
Gakh, O., Cavadini, P., Isaya, G. (2002) Mitochondrial processing peptidases. Biochim Biophys Acta. 1592: 63-77.
Gieg?, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26: 5017-5035.
Kozak, M. (1989) Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems. Mol. Cell. Biol. 9: 5073-5080.
Kozak, M. (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87: 8301-8305
Kozak, M. (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266: 19867-19870.
Kozak, M. (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J. 16: 2482-92
Kozak, M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234: 187-208
Mar?chal-Drouard, L., Weil, J. H., and Dietrich, A. (1993) Transfer RNAs and transfer RNA genes in plants. Annu. Rev. Cell. Biol. 8: 115-131.
Martinis, S. A., Schimmel, P. (1993) Microhelix aminoacylation by a class I tRNA synthetase. Non-conserved base pairs required for specificity. J. Biol. Chem. 268: 6069-72.
Mirande, M. (1991) Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol. 40:95-142.
Mireau, H., Lancelin, D., and Small, I. D. (1996) The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases. Plant Cell 8: 1027-1039
Nakai, K. and Horton, P. (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization Trends Biochem. Sci. 24: 34-36
Natsoulis, G., Hilger, F., and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243.
Neupert, W. (1997) Protein import into mitochondria. Annu Rev Biochem. 66: 863-917.
Peeters, N., and Small, I. (2001) Dual targeting to mitochondria and chloroplasts. Biochim. Biophys. Acta 1541: 54–63
Ribas de Pouplana, L., Turner, R. J., Steer, B. A., Schimmel, P. (1998) Genetic code origins: tRNAs older than their synthetases? Proc Natl Acad Sci U S A. 95: 11295-300.
Ripmaster, T. L., Shiba, K., and Schimmel, P. (1995) Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc. Natl. Acad. Sci. USA 92: 4932-4936
Sass, E., Blachinsky, E., Karniely, S., and Pines, O. (2001) Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini. J. Biol. Chem. 276: 46111-46117
Sass, E., Karniely, S., and Pines, O. (2003) Folding of fumarase during mitochondrial import determines its dual targeting in yeast. J. Biol. Chem. 278: 45109-45116
Schimmel, P., R. and Soll, D. (1979) Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem. 48:601-48.
Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27
Slusher, L. B., Gillman, E. C., Martin, N. C., and Hopper, A. K. (1991) mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5. Proc. Natl. Acad. Sci. USA 88: 9789-9793
Souciet, G., Menand, B., Ovesna, J., Cosset, A., Dietrich, A., and Wintz, H. (1999) Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur. J. Biochem. 266: 848-854.
Strobel, G., Zollner, A., Angermayr, M., and Bandlow, W. (2002) Competition of Spontaneous Protein Folding and Mitochondrial Import Causes Dual Subcellular Location of Major Adenylate Kinase. Mol. Biol. Cell 13: 1439–1448
Tang, H. L., Yeh, L. S., Chen, N. K., Ripmaster, T., Schimmel, P., Wang, C. C. (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J. Biol. Chem. 279: 49656-63
Turner, R. J., Lovato, M., Schimmel, P. (2000) One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J. Biol. Chem. 275: 7681-8.
Tzagoloff, A., Vambutas, A., and Akai, A. (1989) Characterization of MSM1, the structural gene for yeast mitochondrial methionyl-tRNA synthetase. Eur. J. Biochem. 179: 365–371.
Tzagoloff, A., Gatti, D., Gampel, A. (1990) Mitochondrial aminoacyl-tRNA synthetases. Prog Nucleic Acid Res Mol Biol. 39:129-58.
Wang, C. C., Chang, K. J., Tang, H. L., Hsieh, C. J., Schimmel, P. (2003) Mitochondrial form of a tRNA synthetase can be made bifunctional by manipulating its leader peptide. Biochemistry 42: 1646-51.
Wolfe, C. L., Lou, Y. C., Hopper, A. K., Martin, N. C. (1994) Interplay of heterogeneous transcriptional start sites and translational selection of AUGs dictate the production of mitochondrial and cytosolic/nuclear tRNA nucleotidyltransferase from the same gene in yeast. J. Biol. Chem.269: 13361-6.
黃曉芸 (2005) 酵母菌 ALA1 基因轉譯起始機制的研究。中央大學碩士論文