跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳皇志
Hwang-Zhi Chen
論文名稱: 感應馬達之新型直接轉矩控制研究
指導教授: 徐國鎧
Kuo-Kai Shyu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 106
中文關鍵詞: 感應馬達直接轉矩控制磁通補償濾波器回授
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 定子磁通補償的應用,主要是因馬達於低轉速時,轉子磁通變化緩慢,若定子磁通仍操作於定磁通情況下,將使定子磁通無法達到有效控制,進而使馬達輸出之電磁轉矩降低。故當馬達於低轉速運轉時,提出定子磁通量之補償策略,使得馬達在低速時能有效改善輸出電磁轉矩降低的問題。
    另外,對於定子電阻因溫升效應而改變問題,本論文針對直接轉矩控制,提出對傳統直接轉矩之磁通計算的改善方法。由於定子電阻會造成反電勢的降低,使得有效輸出轉矩降低,故提出磁通補償的必要性;而馬達參數的變動,使得定子電流產生高頻雜訊,進而導致定子磁通向量於空間位置之估測產生誤差,而選擇錯誤的電壓控制向量,產生轉矩漣波,故傳統的磁通計算中,利用設計低通濾波器於回授路徑上作為補償,可有效消除馬達於低轉速運轉時,因參數變動所造成磁通計算的高頻誤差。


    目錄 摘要Ⅰ 目錄Ⅱ 圖表目錄Ⅳ 符號列表Ⅶ 第一章 緒論 1.1 研究動機與目的1 1.2 內容大綱3 第二章 感應馬達之動態數學模型 2.1 感應馬達之動態數學模型5 2.2 感應馬達之動態特性分析12 2.2.1 運轉特性分析12 2.2.2 電磁轉矩與磁通命令的選擇16 第三章 直接轉矩速度控制驅動器設計 3.1 前言18 3.2 數位訊號處理器單元21 3.3 速度回授單元24 3.4 光耦合隔離電路與半橋驅動電路單元26 3.5 切換開關與緩衝電路單元29 3.6 電流、電壓感測電路單元31 3.7 軟體流程圖35 第四章 直接轉矩之速度控制 4.1 直接轉矩控制法36 4.2 感應馬達之直接轉矩速度控制37 4.3 磁通與轉矩控制40 4.4 切換向量表之選擇策略43 4.5 直接轉矩之模擬與實驗結果46 4.6 結論65 第五章 新型直接轉矩磁通補償器 5.1 前言66 5.2 低轉速磁通補償調整68 5.3 磁通估測誤差補償與偏移(Offset)修正73 5.4 模擬與實驗結果76 5.5 結論95 第六章 結論與建議96 附錄AA-1 參考文獻R-1

    [1]G. Buja and D. Casadei,“DTC-based strategies for induction
    motor drives,”IECON‘97 23rd International Conference on
    Industrial Electronics, Control and Instrumentation, Vol. 4,
    pp. 1506-1516, 1997.
    [2]T. G. Haberler and D. M. Divan,“Control strategies for
    direct torque control using discrete pulse modulation,”IEEE
    Trans. Industry Applications, Vol. 27, No. 5, pp. 893-901,
    Sept.-Oct. 1991.
    [3]D. Casadei, G. Grandi, G. Serra, and A. Tani,“Effects of
    flux and torque hysteresis band amplitude in direct torque
    control of induction machines,”IECON‘94 20th International
    Conference on Industrial Electronics, Control and
    Instrumentation, Vol. 1, pp. 299-304, 1994.
    [4]M. P. Kazmierkowski and A. B. Kasprowicz,“Improved direct
    torque and flux vector control of PWM inverter-fed induction
    motor drives,”IEEE Trans. on Industry Electronics, Vol. 42,
    No. 4, pp. 344-349, Aug. 1995.
    [5]J. N. Nash,“Direct torque control, induction motor vector
    control without an encoder,”IEEE Trans. on Industry
    applications, Vol. 33, No. 2, pp. 333-341, March-April 1997.
    [6]H. Y. Zhong, H. P. Messinger, and M. Rashad,“A new micro-
    computer based direct torque control system for three phase
    induction motor,”IEEE Trans. on Industry Applications, Vol.
    27, No. 2, pp. 294-298, March-April 1991.
    [7]C. G. Mei, S. K. Panda, J. X. Xu and K. W. Lim,“Direct
    torque control of induction motor—variable switching
    sectors,”IEEE PEDS‘99 International Conference on Power
    Electronics and Drive Systems, Vol. 1, pp. 80-85, 1999.
    [8]C. Attaianese, A. Perfetto, A. Damiano and I. Marongiu,“A
    direct torque control algorithm imposing the mechanical
    response of speed controlled induction motor drives,”ISIE
    ‘96, Proceedings of the IEEE International Symposium on
    Industrial Electronics, Vol. 1, pp. 157-162, 1996.
    [9]T. G. Habetler, F. Profumo, M. Pastorelli and L. M. Tolbert,
    “Direct torque control of induction machines using space
    vector modulation,”IEEE Trans. on Industry Applications,
    Vol. 28, No. 5, pp. 1045—1053, Sept.-Oct. 1992.
    [10]A. Purcell, P. Acarnley,“Multilevel hysteresis comparator
    forms for direct torque control schemes,”Electronics
    Letters, Vol. 34, No. 6, pp. 601—603, March 1998.
    [11]J. Maes and J. A. Melkebeek,“Speed-sensorless direct
    torque control of induction motors using an adaptive flux
    observer,”IEEE Trans on Industry Applications, Vol. 36,
    No. 3, pp. 778—785, May-June 2000.
    [12]D. Casadei, G. Serra and K. Tani,“Implementation of a
    direct control algorithm for induction motors based on
    discrete space vector modulation,” IEEE Trans. on Power
    Electronics, Vol. 15, No. 4, pp. 769-777, July 2000.
    [13]C. Attaianese, V. Nardt, A. Perfetto and G. Tomasso,
    “Vectorial Torque control : A novel approach to torque and
    flux control of induction motor drives,”IEEE Trans. on
    Industry Applications, Vol. 35, No. 6, pp. 1399-1405, Nov.-
    Dec. 1999.
    [14]L. A. Cabrera, M. E. Elbuluk and D. S. Zinger,“Learning
    techniques to train neural networks as a state selector for
    Inverter-Fed induction machines using direct torque
    control,” IEEE Trans. on Power Electronics, Vol. 12, No.
    5, pp. 788-799, Sept. 1997.
    [15]A. Arias, L. Romeral, E. Aldabas, and M. G. Jayne,
    “Improving direct torque control by means of fuzzy logic,”
    Electronics Letters, Vol. 37, No. 1, pp. 69—71, Jan. 2001.
    [16]Y. Xia and W. Oghanna,“Study on fuzzy control of induction
    machine with direct torque control approach,”Proceedings
    of the IEEE International Symposium on Industrial
    Electronics, ISIE‘97., Vol. 2, 1997.
    [17]P. Z. Grabowski, M.P. Kazmierkowski, B.K. Bose, F.
    Blaabjerg,“A simple Direct-Torque Neuro-Fuzzy control of
    PWM-Inverter-Fed induction motor drive,”IEEE Trans. on
    Industrial Electronics, Vol. 47, No. 4, pp. 863-870, Aug.
    2000.
    [18]E. K. K. Sng, A. C. Liew and T. A. Lipo,“New Observer-
    Based DFO scheme for speed sensorless Field-Oriented drives
    for Low-Zero-Speed operation,”IEEE Trans. on Power
    Electronics, Vol. 13, No. 5, pp. 959-968, Sept. 1998.
    [19]M. S. Nait Said, M. E. H. Benbouzid,“Induction motors
    direct field oriented control with robust On-Line tuning
    of rotor resistance,”IEEE Trans. on Energy Conversion,
    Vol. 14, No. 4, pp. 1038-1042, Dec. 1999.
    [20]A. Consoli, G. Scarcella and A. Testa,“A new Zero-
    Frequency Flux-Position Detection approach for Direct-Field-
    Oriented-Control drive,”IEEE Trans. on Industry
    Applications, Vol. 36, No. 3, pp. 797-804, May-June 2000
    [21]Peter Vas, Vector Control of AC Machines, Clarendon Press
    Oxford, 1990.
    [22]D. W. Novotny, T. A. Lipo, Vector Control and Dynamic of AC
    Drives, Clarendon Press Oxford, 1990.
    [23]B. K. Bose, Power Electronics and AC Drives, Englewood
    Cliffs, Prentice-Hall, 1986.
    [24]Y. S. Lai,“New random technique of inverter control for
    common mode voltage reduction of Inverter-Fed induction
    motor drives,”IEEE Trans. on Energy Conversion, Vol. 14,
    No. 4, pp. 1139-1146, Dec. 1999.
    [25]Y. S. Lai and S. C. Chang,“DSP-based implementation of new
    random switching technique of inverter control for
    sensorless vector-controlled induction motor,”Electric
    Power Applications IEE Proceedings, Vol. 146, No. 2, pp.
    163-172, March 1999.
    [26]Y. S. Lai, H. C. Huang; Y. S. Kuan and C. M. Young,“A new
    random inverter control technique for motor drive,”1998.
    APEC‘98., Applied Power Electronics Conference and
    Exposition, Conference Proceedings 1998, Thirteenth Annual,
    Vol.1, pp. 101 —107, 1998
    [27]J. K. Seok and S. K. Sul,“Optimal flux selection of an
    induction machine for maximum torque operation in Flux-
    Weakening region,”IEEE Transactions on Power Electronics,
    Vol. 14, No. 4, pp. 700-708, July 1999.
    [28]S. H. Kim and S. K. Sul,“Voltage control strategy for
    maximum torque operation of an induction machine in the
    Field-Weakening region,”IEEE Trans. on Industrial
    Electronics, Vol. 44, No. 4, pp. 512 —518, Aug. 1997.
    [29]S. H. Kim and S. K. Sul,“Maximum torque control of an
    induction machine in the field weakening region,”IEEE
    Trans. on Industry Applications, Vol. 31, No. 4, pp. 787-
    794, July- Aug. 1995.
    [30]Y. N. Lin and C. L. Chen,“Automatic IM parameter
    measurement under sensorless field — oriented control,”
    IEEE Trans. Industrial Electronics, Vol. 46, No.1, pp. 111-
    118, Feb. 1999.
    [31]K. Akatsu and A. Kawamura,“Sensorless very Low-Speed and
    Zero-Speed Estimations with online rotor resistance
    estimation of induction motor without signal injection,”
    IEEE Trans. on Industry Applications, Vol. 36, No 3, pp.
    764 —771, May-June 2000.
    [32]K. Akatsu and A. Kawamura,“Online rotor resistance
    estimation using the transient state under the speed
    sensorless control of induction motor,”IEEE Trans. on
    Power Electronics, Vol. 15, No. 3, pp. 553-560, May 2000.
    [33]M. S. Nait Said and M. E. H. Benbouzid,“Induction motors
    direct field oriented control with robust On-Line tuning of
    rotor resistance,”IEEE Trans. on Energy Conversion, Vol.
    14, No. 4, pp. 1038-1042, Dec. 1999.
    [34]S. Mir, M. E. Elbuluk and D. S. Zinger,“PI and fuzzy
    estimators for tuning the stator resistance in direct
    torque control of induction machines,”IEEE Trans. on Power
    Electronics, Vol. 13, No. 2, pp. 279-287, March 1998.
    [35]B. K. Bose and N. R. Patel,“Quasi-Fuzzy estimation of
    stator resistance of induction motor,”IEEE Trans. on Power
    Electronics, Vol. 13, No. 3, pp. 401-409, May 1998.
    [36]L. A. Cabrera, M. E. Elbuluk and I. Husain,“Tuning the
    stator resistance of induction motors using artificial
    neural network,”IEEE Trans. on Power Electronics, Vol. 12,
    No. 5, pp. 779-787, Sept. 1997.
    [37]K. D. Hurst, T. G. Habetler, G. Griva and F. Profumo,“Zero-
    Speed tacholess IM torque control: Simply a matter of
    stator voltage integration,”IEEE Trans. on Industry
    Applications, Vol. 34, No. 4, pp. 790-795, July-Aug. 1998.
    [38]J. Hu and B. Wu,“New integration algorithms for estimating
    motor flux over a wide speed range,”IEEE Trans. on Power
    Electronics, Vol. 13, No. 5, pp. 969-977, Sept. 1998.
    [39]M. H. Shin, D. S. Hyun, S. B. Cho and S. Y. Choe,“An
    improved stator flux estimation for speed sensorless stator
    flux orientation control of induction motors,”IEEE Trans.
    on Power Electronics, Vol. 15, No. 2, pp. 312-318, March
    2000.
    [40]王年福,“感應馬達之低轉速直接轉矩控制策略”, 中央大學電機所
    碩士論文, 民國89年6月
    [41]黃志明,“全數位化感應馬達直接轉矩向量控制驅動器設計─固定點
    DSP實現”, 中央大學電機所碩士論文,民國88年6月。
    [42]TMS320C24x DSP Controllers Reference Set, Texas
    Instruments, 1997.
    [43]TMS320C24x DSP Controllers Evaluation Module Technical
    Reference Set, Texas Instruments, 1997.
    [44]TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User‘s
    Guide, Texas Instruments, 1995.
    [45]TMS320C2xx C Source Debugger User‘s Guide, Texas
    Instruments, 1995.
    [46]TMS320C1x/C2x/C2xx/C5x Optimizing C Compiler User‘s Guide,
    Texas Instruments, 1995.
    [47]Digital Signal Processing Solution for AC Induction Motor,
    Application Report Literature Number: BPRA043, Texas
    Instruments, 1997.
    [48]TMS320F20x/F24x DSP Embedded Flash Memory Technical
    Reference, Application Report Literature Number: SPRU282,
    Texas Instruments, 1998.

    QR CODE
    :::