跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林宏哲
Hung-che Lin
論文名稱: 椎體成形術之塌陷椎體復位模擬與分析
指導教授: 賴景義
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: 椎體成形術塌陷椎體復位骨水泥體積三維模型變形
外文關鍵詞: vertebroplasty, collapsed spinal vertebra reduction, bone cement volume, 3D model deformation
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 椎體成形術中,通常只使用兩張X光影像醫師診斷及進行術前規劃,但由於脊椎的幾何結構複雜,上述資料無法提供醫師足夠的資訊。在術中,為了補強脊椎的結構強度,必須將骨水泥打入脊椎中進行加強,但其作業上必須一直拍攝多張C-Arm來觀看目前骨水泥的灌注情形,導致醫療人員的輻射量大增。為了讓醫師在術前對於骨水泥灌注量有一個大致上的掌握,本研究發展自動塌陷椎體復位技術,其概念為使病患塌陷之椎體經由變形技術復原成破損前的樣子,最後利用變形前後之體積差異提供給醫師作為骨水泥灌注量之參考,本椎體自動復位技術重點包含:(1)病患本身三維椎體模型重建輸入,(2)自動尋找塌陷椎體的表面位置,(3)自動尋找塌陷椎體於變形復位後的表面位置,(4)保留椎體原有特徵之限制,藉此完成椎體復位變形。本研究藉由數個模擬塌陷椎體模型驗證自動塌陷椎體復位技術之可靠度,並以實際病患案例進行變形復位,針對體積變化的合理性進行探討與分析,說明本研究提出之方法的可行性。


    In vertebroplasty surgery, the surgeons usually use two pieces of X-ray images for diagnosis and surgical planning. Because of the complicated geometry in spine, such information is usually not rich enough for decision making. During surgery, the surgeons inject bone cement into the center of the collapsed spinal vertebra to stabilize and strengthen the crushed bone. It is necessary for the surgeons to take plenty of C-arm images to realize the real time position and orientation of the tools as well as the cement. The increasing radiation exposure for this kind of surgery will probably bring the surgeons some diseases in the future. To assist the surgeons knowing the volume of the bone cement injected, this research intends to develop an auto-reduction of subsided vertebral. The idea is to deform collapsed vertebra into its normal shape, and then to use the volume difference as a bone cement perfusion reference. The proposed auto-reduction technique mainly contains the following features : (1)input patient 3D vertebral model, (2)compute the surface of vertebral body, (3)evaluate the objective surface of the deformed vertebral body, and (4)retain the origin al feature of the vertebra. In this study, several examples, including artificial models and real patient models, are employed to demonstrate the feasibility of the proposed method.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1前言 1 1.2研究背景 2 1.3研究目的與方法 3 1.3.1研究目的 3 1.3.2研究方法 8 1.4 論文架構 11 第二章 文獻回顧 12 2.1.1脊椎結構 12 2.1.2骨質疏鬆所導致的椎體骨折 14 2.2三維模型變形演算法 16 2.2.1自由變形技術(Free-form Deformation) 16 2.2.2骨架驅動的變形技術(Skeleton-driven Deformation) 17 2.2.3基於模型特徵的變形技術(Feature-based Deformation) 17 2.3模型變形最佳化解法 20 2.3.1線性變形能量函數的最佳化計算 20 2.3.2非線性變形能量函數的最佳化計算 22 第三章 塌陷椎體變形復位方法 23 3.1前言 23 3.2塌陷椎體表面繪製 23 3.3欲變形後椎體表面繪製 25 3.4.1變形模擬-Laplacian限制 29 3.4.2變形模擬-稀疏矩陣與最佳化求解 32 3.5椎體變形改良-自動變形 33 3.5.1自動化變形-計算椎體表面 35 3.5.2自動化變形-計算塌陷椎體變形後表面位置 37 3.6模型變形後之虛擬X光校正 40 第四章 自動椎體變形復位驗證與範例討論 44 4.1前言 44 4.2椎體自動變形復位之可靠度驗證 44 4.3病患案例 52 4.3.1病患案例-Biconcave與Wedge複合型骨折探討 60 4.4變形椎體-骨髓針穿刺應用 63 第五章 結論與未來展望 68 5.1結論 68 5.2未來展望 69 參考文獻 70

    [1] P. Galibert, H. Deramond, P. Rosat and D. L. Gars, “Preliminary Note on the Treatment of Vertebral Angioma by Percutaneous Acrylic Vertebroplasty”, Neurochirurgie, Vol. 33, No. 2, pp. 166-168, 1987.
    [2] M. E. Jensen, A. J. Evans, J. M. Mathis, D. F. Kallmes, H. J. Cloft and J. E. Dlon, “Percutaneous Polymethylmethacrylate Vertebroplasty in the Treatment of Osteoporotic Vertebral Body Compression Fractures : Technical Aspects”, AJNR Am J Neurochirurgie, Vol. 18, pp. 1897-1904, 1997.
    [3] J. D. Barr, M. S. Barr and T. J. Lemley, “Percutaneous Vertebroplasty for Pain Relief and Spinal Stabilization”, Spine, Vol. 25, pp. 923-928, 2000.
    [4] J. M. Mathis, J. D. Barr, S. M. Belkoff, M. S. Barr, M. E. Jensen and J. Deramond, “Percutaneous Vertebroplasty : A Developing Standard of Care for Vertebral Compression Fractures”, AJNR Am J Neurochirurgie, Vol. 22, pp. 373-381, 2001.
    [5] 王瀚興,電腦輔助椎體成形術術前評估系統發展,國立中央大學碩士論文,2012.
    [6] 鄭麗菁、鄭敦輝、陳健行與賴昆城,醫用解剖學,合計圖書出版社,2008.
    [7] S. M. Kurtz and A. A. Edidin, Spine Technology Handbook, Elsevier Academic Press, 2006.
    [8] T. W. Sederberg and S. R. Parry, “Free-form Deformation of Solid Geometric Models”, Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 151-160, 1986.
    [9] J. Griessmair and W. Purgathofer, “Deformation of Solids With Trivariate B-splines”, Proceedings of Eurographics, pp. 137-148, 1989.
    [10] H. J. Lamousin and W. N. Waggenspack, “NURBS-based Free-form Deformations”, IEEE Computer Graphics and Applications, Vol. 14, pp. 59-65, 1994.
    [11] S. Coquillart, “Extended Free-form Deformation: a Sculpturing Tool for 3D Geometric Modeling”, Proceedings of the 17th annual conference on Computer graphics and Interactive Techniques, pp. 187-196, 1990.
    [12] J. Feng, J. Shao, X. Jin, Q. Peng and A. R. Forrest, “Multiresolution Free-form Deformation with Subdivision Surface of Arbitrary Topology”, The Visual Computer, Vol. 22, pp. 28-42, 2006.
    [13] T. Ju, S. Schaefer and J. Warren, “Mean Value Coordinates for Closed Triangular Meshes”, ACM Transactions on Graphics(TOG), Vol. 24, pp. 561-566, 2005.
    [14] J. P. Lewis, M. Cordner and N. Fong, “Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-driven Deformation”, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 165-172, 2000.
    [15] S. Capell, S. Green, B. Curless, T. Duchamp and Z. Popović, “Interactive Skeleton-driven Dynamic Deformation”, ACM Transaction on Graphics(TOG), Vol. 21, pp. 589-593, 2002.
    [16] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery and W. Stuetzle, “Multiresolution Analysis of Arbitrary Meshes”, Proceedings of the 22th Annual Conference on Computer Graphics and Interactive Techniques, pp. 173-182, 1995.
    [17] D. Zorin, P. Schroder and W. Sweldens, “Interactive Multiresolution Mesh Editing”, Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 259-268, 1997
    [18] M. Botsch and L. Kobbelt, “Multiresolution Surface Representation Based on Displacement Volumes”, Computer Graphics Forum, Vol. 22, pp. 483-491, 2003.
    [19] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo and H. Y. Shum, “Mesh Editing with Poisson-based Gradient Field Manipulation”, ACM Transactions on Graphics, Vol. 23, pp. 644-651, 2004.
    [20] O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rossl and H. P. Sheidel, “Laplacian Surface Editing”, Proceeding of the Eurographics/ ACM SIGGRAPH Symposium on Geometry Processing, pp. 175-184, 2004.
    [21] A. Nealen, O. Sorkine, M. Alexa and D. Cohen-Or, “A Sketch-based Interface for Detail-preserving Mesh Editing”, ACM Transactions on Graphics, Vol. 24, pp. 1142-1147, 2005.
    [22] T. Popa, D. Julius and A. Sheffer, “Material Aware Mesh Deformations”, ACM Transactions on Graphics, Vol. 25, pp. 1174-1179, 2006.
    [23] P. Perez, M. Gangnet and A. Blake, “Poisson Image Editing”, ACM Transactions on Graphics, pp. 313-318, 2003.
    [24] H. P. William, A. T. Saul, T. V. William and P. F. Brian, Numerical Recipes in C++ : The Art of Scientific Computing, Cambridge University Press, 2003.
    [25] 許晉瑋,椎體成型術骨髓針穿刺術前規劃與模擬,國立中央大學碩士論文,2013

    QR CODE
    :::