| 研究生: |
王祉鈞 Chih-Chun Wang |
|---|---|
| 論文名稱: | A High Recognition Rate OCR for Specific Fonts |
| 指導教授: |
鄭永斌
Yung-Pin Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 光學字元辨識 |
| 外文關鍵詞: | Optical Character Recognition |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光學字元辨識(OCR)是一個發展多年的技術,現今已有非常多的專案及研究對這個領域做出貢獻[1]。但是發展如此久的技術,卻一直沒有一個工具能夠百分之百的正確辨識出所有文字。這個問題的理由很簡單:要做一個通用的OCR工具,所必須要面對的狀況太過多樣化,辨識影像的來源、文字影像的品質、各式的文章排版、五花八門的字體、大大小小的文字。只要有其中一項變動,對電腦來說就是一個新的挑戰。
本論文為了解決辨識率不足的問題,將會針對我們的應用目的(Korat自動化測試系統的test oracle),在合理的範圍內限制了各項的條件。經由固定且高品質的影像來源,確保待辨識影像的端正與乾淨。在固定平台下的操作,使文章排版受到限制。提供有限的字體,並且每種字體區分開來,降低影像辨識的複雜度。藉由以上的條件限制,我們實作出一個高辨識率的OCR工具-TinyOCR。
經實驗結果證實,TinyOCR在Linux Console界面中,於大多數的應用情境下,皆可正確的辨識出影像中的文字。且在辨識的效率也非常的高。因此它能夠提供使用者非常高的信賴度,在自動化測試的應用上也令人能夠安心。
Optical Character Recognition (OCR) is a technology which has been developed for many years. There are a lot of projects and researches contribute to this field. However, there is still no tool that can achieve one hundred percent recognition rate for all characters. The reason is simple: for a general OCR tool, there are so many factors can complicate this problem. For example, the source of targets, the quality of image, layout of the article, wide variety fonts, and different zoom of the characters. Any one of these factors changing is a new challenge for OCR technique.
In this paper, we will make some restriction in reasonable range for our usage, test oracle for our testing automation system Korat. A high quality image source from a frame grabber can make no skew and clear. Fixed platform provides the fixed layout. With limited fonts that may be used, we can separate each font to its own database and reduce the complexity of classification. By limited the above conditions, we implement a high recognition rate OCR tool - TinyOCR.
Our experiments indicate that our implementation can recognize the characters correctly in most of scenarios in Linux console, and consume little time. So that it can provide users high reliability in the usage of testing automation.
[1] V. K. Govindan, and A. P. Shivaprasad, “Character recognition — A review,” Pattern Recognition, vol. 23, no. 7, pp. 671-683, //, 1990.
[2] R. Smith. "Training Tesseract3 "; https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3.
[3] ABBYY. "Recognition with Pattern Training," http://www.abbyy-developers.eu/en:tech:insideocr:pattern_training.
[4] H. K. Leung, and L. White, "Insights into regression testing [software testing]." pp. 60-69.
[5] J. Takahashi, “An automated oracle for verifying GUI objects,” ACM SIGSOFT Software Engineering Notes, vol. 26, no. 4, pp. 83-88, 2001.
[6] R. W. Smith, "History of the Tesseract OCR engine: what worked and what didn't." pp. 865802-865802-12.
[7] X.-C. Chen, “Korat: An O.S.-independent Capture/Replay Test Automation System,” Institute of Computer Science & Information Engineering, Natoinal Central Univercity, Natoinal Central Univercity.
[8] N. T. Corporation. "ARM Cortex™-M0 MCUs - NUC140VE3CN," https://www.nuvoton.com/hq/products/microcontrollers/arm-cortex-m0-mcus/nuc140-240-connectivity-series/nuc140ve3cn/?__locale=en.
[9] A. Tech. "PCIe-HDV62A, 1-CH PCI Express® HDMI Video & Audio Capture Card(formerly HDV62A)," http://www.adlinktech.com/PD/web/PD_detail.php?cKind=&pid=1356&seq=&id=&sid=.
[10] *Hobbit*. "Netcat: the TCP/IP swiss army," http://nc110.sourceforge.net/.
[11] J. E. Albus, R. Anderson, J. Brayer, R. DeMori, H.-Y. Feng, S. Horowitz, B. Moayer, T. Pavlidis, W. Stallings, and P. Swain, Syntactic pattern recognition, applications: Springer Science & Business Media, 2012.
[12] Ø. D. Trier, A. K. Jain, and T. Taxt, “Feature extraction methods for character recognition-a survey,” Pattern recognition, vol. 29, no. 4, pp. 641-662, 1996.
[13] R. Smith, “An Overview of the Tesseract OCR Engine,” in Proceedings of the Ninth International Conference on Document Analysis and Recognition, 2007, pp. 629-633.
[14] ABBYY. "Feature of ABBYY FineReader 12 Professional," http://www.abbyy.com/finereader/professional/features/.
[15] M. Heliński, M. Kmieciak, and T. Parkoła, “Report on the comparison of Tesseract and ABBYY FineReader OCR engines,” Improoving Access to Text, 2012.
[16] C. Cortes, and V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20, no. 3, pp. 273-297, /, 1995.
[17] S. R. Gunn, “Support vector machines for classification and regression,” ISIS technical report, vol. 14, 1998.