跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李尚謙
Shan-Chien Li
論文名稱: 結合石墨烯之混能式(壓電、靜電)穿戴形變感測器與智慧型玻璃應用
A Self-Powered Sensor with a hybridization of transparent and Stretchable graphene-piezoelectric-Triboelectric synergetic structures for applications of Smart Window and human motion detection
指導教授: 傅尹坤
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 47
中文關鍵詞: 近場電紡織技術壓電纖維奈米發電機靜電發電機石墨烯自供電系統
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用近場電紡織技術(near-field electrospinning,NFES),研究壓電奈米纖維,並且製作成奈米發電機(nanogenerator,NG ),主要重點為(1)利用近場電紡織技術大面積排列壓電奈米纖維製造發電機,(2)結合Cu-PTFE靜電發電機(triboelectric generator, TG),作為高輸出之混能發電機,(3)結合透明石墨烯電極製造全透明之混能發電機。以直寫(Direct -write)方式將壓電高分子材料聚偏氟乙烯(polyvinylidene fluoride,PVDF)利用NFES技術與XY精密位移平台將奈微米纖維(nano /micro fibers,NMFs )大面積排列在可撓性基底上製作成壓電奈米發電機,並且進行一系列訊號量測與驗證。為了使發電機更有效率的蒐集機械能,我們結合了靜電發電機成功讓混能式發電機有更高的輸出功率。另外,我們利用石墨烯作為電極,製造出全透明可撓的發電機,較於以往不透明的銅箔電極,全透明式有更好的應用,未來可以利用在智慧型穿戴裝置上做為自供電系統。


    In this thesis, the near-field electrospinning (near-field electrospinning,NFES) technology was used to fabricate piezoelectric nano fibers and making nano-generator (NG). The mainly focused of this research on (1) Using NFES technology fabricated massively piezoelectric nano fibers as NG, (2) Combined Cu-PTFE triboelectric generator (TG) and NG as a hybrid generator, (3) Combined transparent graphene electrode to manufacture transparent hybrid generators. In this research, we demonstrated a polyvinylidene fluoride (PVDF) fibers could function as a suitable choice to act as a human motions sensors. In order to increase the output power, we development a combination of TG and NG as a hybrid device. Furthermore, we used graphene film as piezoelectric generator and triboelectric generator’s electrode to fabricate all transparent hybrid self-power sensor. The device demonstrated highly transparent and well flexible properties and the output voltage/current are measured as 6V/280nA under small mechanical force.

    目錄 中文摘要(Chinese Abstract) Ⅱ 英文摘要(English Abstract) Ⅲ 致 謝 Ⅳ 目錄 V 圖目錄 Ⅶ 第一章 緒論 1 1-1 壓電紡織技術與靜電發電機 1 1-2 透明石墨烯壓電/靜電發電機 2 1-3 論文架構 4 第二章 利用近場電紡織技術大面積排列壓電奈米纖維製造奈米發電機 5 2-1 導論 5 2-2 實驗 5 2-2-1 電紡織溶液 5 2-2-2 電紡織設備架構 6 2-2-3 直寫(direct-write)方式奈米發電機製作 7 2-3 結果與討論 8 第三章 新型混能自供電感應器應用在智慧玻璃和感測人體運動 12 3-1 導論 12 3-2 實驗 12 3-2-1以鍍金PCB機板與奈米纖維製成壓電發電機 12 3-2-2以Cu與PTFE摩擦之靜電發電機 13 3-3結果與討論 13 第四章 結合透明石墨烯電極製造全透明式壓電-靜電發電機 17 4-1導論 17 4-2實驗 17 4-2-1電紡織溶液 17 4-2-2石墨烯製成 18 4-3結果與討論 19 第五章 結論 28 參考文獻 29

    [1] G. J. Aubrecht, Energy: Physical, Environmental, and Social Impact 3rd edn.
    Pearson Education, London, 2006, Ch. 1, 2–15.
    [2] Z. L. Wang, Adv. Mater. 2011, 24, 280–285
    [3] J. Paradiso, P. Dutta, H. Gellersen, E. Schooler, IEEE Pervasive Comput. 2005, 4, 18–27.
    [4] Z. L. Wang, J. Song, Science 2006, 312, 242–246.
    [5] S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O’Donnell, C. R. Saha, S. Roy, J. Micromech. Microeng. 2007,17, 1257–1265.
    [6] R. Yang, Y. Qin, C. Li, G. Zhu, Z. L. Wang, Nano Lett. 2009, 9, 1201.
    [7] C. Xu, X. Wang, Z. Lin Wang, J. Am. Chem. Soc. 2009, 131, 5866.
    [8] Y. K. Fuh, P. C. Chen, Z. M. Huang, H. C. Ho, Nano Energy 2015, 11, 671.
    [9] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, L. Lin, Nano Lett. 2010, 10, 726.
    [10] M.C. Celina, T.R. Dargaville, P.M. Chaplya, R.L. Clough, Mater. Res. Soc. Symp. Proc., 2005, 851, 449.
    [11] Y. K. Fuh, J. C. Ye, P. C. Chen, Z. M. Huang, J. Mater. Chem. A, 2014, 2, 16101.
    [12] C. E. Chang, V. H. Tran, J. B. Wang,; Y. K. Fuh, L. W. Lin, Nano Lett. 2010, 10, 726.
    [13] Y. K. Fuh, S. Y. Chen and J. C. Ye, Appl. Phys. Lett., 2013, 103,033114.
    [14] S. Sato, K. Yamada, N. Inagaki, Med. Biol. Eng. Comput. 2006, 44, 353.
    [15] M. Kanik, M. G. Say, B. Daglar, A. F. Yavuz, M. H. Dolas, M. M. El-Ashry, M. Bayindir, Adv. Mater. 2015, 27, 2367.
    [16] T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang, M. Zhu, Nano Energy 2015.01,038
    [17] Z. Li, Z. L. Wang, Adv. Mater. 2010, 23, 84.
    [18] B. U. Hwang, J. H. Lee, T. Q. Trung, E. Roh, D. I. Kim, S. W. Kim, N. E. Lee, ACS Nano, 2015, 9, 9.
    [19] Q. Liang, X. Yan, Y. Gu, K. Zhang, M. Liang, S. Lu, X. Zheng, Y. Zhang, Sci. Rep. 2015, 5, 9080
    [20] J. H. Lee, K. Y. Lee, M. K. Gupta, T. Y. Kim, D. Y. Lee, J. Oh, C. Ryu, W. J. Yoo, C. Y. Kang, S. J. Yoon, J. B. Yoo, S. W. Kim, Adv. Mater. 2014, 26, 765.
    [21] Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P. K. Yang, F. Yi, Z. L. Wang, Adv. Mater. 2015, 27, 2340.
    [22] A. V. Rozhkov , G. Giavaras , Y. P. Bliokh , V. Freilikher , F. Nori , Phys. Rep. 2011 , 503 , 77 .
    [23] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, Prog. Mater. Sci. 2011, 56, 1178.
    [24] A. A. Balandin , S. Ghosh , W. Bao , I. Calizo , D. Teweldebrhan , F. Miao , C. N. Lau , Nano Lett. 2008, 8, 902.
    [25] J. O. Hwang , J. S. Park , D. S. Choi , J. Y. Kim , S. H. Lee , K. E. Lee , Y. H. Kim , M. H. Song , S. Yoo , S. O. Kim , ACS Nano 2012 , 6 , 159.
    [26] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 2009, 457, 706-710.
    [27] G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 2008, 3, 270–274.
    [28] X. Wang, L. Zhi, K. Müllen, Nano Lett. 2008, 8, 323–327.
    [29] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science, 2009, 324, 1312–1314
    [30] D. Choi, M. Y. Choi, W. M. Choi, H. J. Shin, H. K. Park, J. S. Seo, J. Park, S. M. Yoon, S. J. Chae, Y. H. Lee, S. W. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, Adv. Mater. 2010, 22, 2187.

    QR CODE
    :::