跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉佳達
Jia-Da Yeh
論文名稱: 應用在條碼辨識的高可靠度影像分割方法
High reliability of image segmentation method in barcode recognition
指導教授: 陳慶瀚
Ching-Han Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 71
中文關鍵詞: 條碼辨識影像分割
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統條碼辨識在光照不均的環境下,會造成條碼影像分割錯誤及辨識率不足的問題。本研究應用迭代式Otsu方法來改善影像的二值化,利用迭代搜索的分割影像的子區域,對於所採集的條碼影像,計算不同光照區域的最佳閾值,以增進影像分割的可靠度,從而提升條碼辨識率。我們實作了此方法,並以一組取樣品質不佳的條碼影像資料庫進行測試,測試結果表明,該方法確實對不同光照環境的影像能夠獲得更好的二值化結果。此一結果將能被應用到真實工業生產條碼的辨識。


    Traditionally, barcode recognition rate will be affected by uneven illumination since it may cause the faults of image segmentation and then raise the error rate of recognition. In this paper, we try to use an iterative triclass thresholding technique proposed by Cai to improve the thresholding. The method uses iterative search for image segmentation and computes the optimal threshold values for different illumination regions. Thus, the reliability of image segmentation is increased and the rate of barcode recognition is improved. We implemented this method and tested it with a group of inferior sampling quality barcode images. The experiment data shows that the method actually obtains a better result of thresholding on images under the uneven illumination. The result will be applied to actually industrial barcode recognition.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章、緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 論文架構 3 第二章、條碼識別與影像分割 4 2.1 條碼簡介 4 2.1.1 二維條碼 - QR Code 4 2.1.2 二維條碼 – Data Matrix 11 2.2 影像前處理 15 2.3 灰階轉換與平均灰階值計算 16 2.4 影像分割 17 2.5 迭代式Otsu Thresholding 演算法 21 第三章、二維條碼辨識演算法設計 23 3.1 硬體合成方法論 23 3.1.1 IDEF0 系統架構 24 3.1.2 Grafcet離散事件建模 25 3.1.3 合成規則 26 3.2條碼辨識系統設計 28 3.3 Otsu二值化演算法模組設計 32 第四章、實驗結果 34 4.1實驗環境 34 4.1.1條碼樣本的取得 34 4.1.2硬體設備 35 4.1.3 開發軟體 35 4.2條碼辨識實作與驗證 36 4.2.1傳統方法 ( Hard-Limiter ) 36 4.2.2使用Otsu演算法 40 4.2.3使用迭代式Otsu演算法 44 4.3實驗結果 48 4.4討論 49 第五章、結論與未來方向 50 5.1 結論 50 5.2未來研究與方向 51 參考文獻 52 附錄 55 Data Initialed模組grafcet 55 Data Categorized模組grafcet 56 Data Summed模組grafcet 57 Data Calculated模組grafcet 58

    [1] T. Sun, and D. Zhou, "Automatic Identification Technology- Application Of Two-Dimensional Code," 2011 IEEE International Conference on Automation and Logistics (ICAL), pp. 164-168, Aug 2011.
    [2] C. H. Chu, D. N. Yang, and M. S. Chen, "Image Stabilization for 2D Barcode in Handheld Devices," Proceedings of International Conference on Multimedia, Augsburg, Bavaria, pp. 697-706, 2007
    [3] T. Kanungo, and P. Resnik, "The Bible, Truth, and Multilingual OCR Evaluation," In Proceedings of SPIE Conference on Document Recognition and Retrieval VI, San Jose, Jan 1999.
    [4] C. Chen, and Y. F. Zheng, "Passive and active stereo vision for smooth surface detection of deformed plates, " IEEE Transactions on Industrial Electronics, Volume:42, Issue: 3, pp. 300-306, 1995
    [5] M. B. Holte, T. Cuong, M. M. Trivedi, and T. B. Moeslund, " Human Pose Estimation and Activity Recognition From Multi-View Videos: Comparative Explorations of Recent Developments," IEEE Journal of Selected Topics in Signal Processing, Volume:6, Issue: 5, pp. 538-552, Aug 2012.
    [6] W. Liu, and D. Hu, "Application of surface fitting in two-dimension barcode image segmentation," Information Technology, pp. 46-48, 2006.
    [7] T. G. Stockham, "Image processing in the context of a visual model," Proc. IEEE, vol. 60, pp. 828-842, 1972.
    [8] Y. Liu, M. Y. Liu, and M. J. Liu, "Design of automatic recognition algorithm of quick response code," Computer Systems & Applications, pp. 51-54, Jun 2006.
    [9] N. Otsu, "A Threshold Selection Method from Gray-Level Histogram," IEEE Trans. Systems, Man, and Cybernetics, vol. 9, Pages 62-66, 1979
    [10] H. Cai, Z. Yang, X Cao, W. Xia, and X. Xu, " A New Iterative Triclass Thresholding Technique in Image Segmentation," IEEE Trans on Image Processing, vol. 23, no. 3, March 2014
    [11] X. P. Hu, Q. Dong, and Z. Q. Yu, "QR code recognition based on image processing," Aeronautical Computing Technique, pp. 99-102, 2007.
    [12] ISO/IEC 18004 Information technology - Automatic identification and data capture techniques - QR Code bar code symbology specification, 2006
    [13] X. D. Hu, and J. M. He, "On the recognition of Data Matrix techniques," Journal of Hangzhou Dianzi University, pp. 124-126, 2008.
    [14] ISO/IEC 16022 Information technology - Automatic identification and data capture techniques - Data Matrix bar code symbology specification, 2006
    [15] L. K. Huang, and M. J. Wang, "Image thresholding" by minimizing the measures of fuzziness," Pettern Recognition, Vol. 28, No. 1, pp.41-51, Jan 1995.
    [16] J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, "a new method for gray-level picture thresholding using the entropy of the histogram," Computer Vision Graphice, and I mage Processing, 29(3), p.273-285, 1985.
    [17] J. Starck, M. Elad, and D. Donoho, "Image Decomposition Via The Combination of Sparse Representations and A Variational Approach", IEEE Trans. on Image Processing, vol. 14, no. 10, pp. 1570-1582, 2005.
    [18] C. H. Chen, C. M. Kuo, C. Y. Chen, and J. H. Dai, "The design and synthesis using hierarchical robotic discrete-event modeling," Journal of Vibration and Control, vol.19, no.11, pp.1603–1613, December 2013.
    [19] R. J. Mayer, "IDEF0 Function Modeling," Air Force Systems Command, 1992.
    [20] X. Fan, and G. Fan, "Graphical Models for Joint Segmentation and Recognition of License Plate Characters," IEEE Signal Processing Letters, Vol. 16, No. 1, pp. 10-13. 2009

    QR CODE
    :::