| 研究生: |
何曼慈 Man-Tzu Ho |
|---|---|
| 論文名稱: |
可撓性有機單晶場效電晶體電性與撓曲關係研究 Study of the eddect of bending on the electric characteristics of flexible organic single crystal based field-effect transistor |
| 指導教授: |
陶雨台
Yu-Tai Tao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 電晶體 、有機單晶 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機半導體內的電荷傳遞與分子結構以及分子堆疊之形貌有極大關聯。欲
探討分子結構與電荷傳導速率關連,受到分子堆疊成膜時的形貌影響。而單晶
為分子間排列規則之完美晶體,以有機單晶製備電晶體適於研究材料本身結構
與電荷傳遞速率之間的關係。另一方面,在軟性電子中,元件需經歷反覆撓
曲,撓曲對元件電性影響是一有趣課題。本實驗使用可撓曲之有機分子TCDAP
單晶製備電晶體元件,研究撓曲對其載子傳遞能力之影響。
在實驗過程中發現原元件結構在彎曲時易造成部分電極破壞和電極與晶
體半導體間的接觸產生脫落,進而影響元件在彎曲狀態時電極部分電流貢獻於
整體電流表現,使得在關閉狀態時,電流上升。經由改良其元件結構,發現以
雙面膠直接固定晶體,降低基板與晶體間的高低差,可增加在彎曲時的支撐力
和穩定性,且經由重複測量電性,也不會使關閉電流產生變化。
在元件結構穩定後,便可排除結構因素,單就材料本質進行研究,發現
在此單晶在不同彎曲方向,分別於載子遷移率上有相反的變化,而不同曲率之
撓曲也造成不同之影響。推測其單晶在彎曲時造成分子間排列有些微的改變,
進而影響載子傳遞速率。且此晶體在經由彎曲前後,電性呈現可逆之變化。
The charge transport in organic semiconductor highly depends
on the structure and the packing morphology of the molecules. The study
of structure/property correlation will be constrained by the morphology
in the film formation. Single crystals have a perfect and regular
molecular packing and transistors based on single crystals are suitable
for the study of intrinsic structure and the charge transport. On the
other hand, in soft electronics, the devices will be bent repeatedly.
The effect of bending on the device property is an interesting subject
to study. In this work, the single crystals of a flexible organic
molecule TCDAP were used to study the effect of bending on carrier
transport in the device.
It is found that bending may cause damages in the electrode
or the contact between the organic semiconductor and the electrode so
that the off-current increased upon bending. It is found that a
double-sided tape between the semiconductor crystal and the substrate
provided support for the crystal so that repeatable and reproducible
electric characteristics can be obtained.
With the new device configuration, it was found that bending
results in consistent yet opposite trends in mobility depending on the
bending direction as well as the bending curvature. It is suggested
that the intermolecular π-π distance changed upon bending, thereby
III
influenced the carrier transport ability . The crystal also exhibit
reversible electric characteristics before and after bending.
參考文獻
1. Laudise R., Kloc C, Simpkins P., Siegrist T. Physical vapor
growth of organic semiconductors. J Cryst Growth. 1998;187(3-
4):449-454.
2. Bao Z, Rogers J a., Katz HE. Printable organic and polymeric
semiconducting materials and devices. J Mater Chem.
1999;9(9):1895-1904..
3. Horowitz G, Horowitz G. Field-effect transistors based on short
organic molecules. J Mater Chem. 1999;9(9):2021-2026.
4. Podzorov V, Pudalov VM, Gershenson ME. Field-effect transistors
on rubrene single crystals with parylene gate insulator. Appl
Phys Lett. 2003;82(11):1739-1741.
5. Menard E, Podzorov V, Hur SH, Gaur A, Gershenson ME, Rogers J a.
High-performance n- And p-type single-crystal organic transistors
with free-space gate dielectrics. Adv Mater. 2004;16(23-24):2097-
2101.
6. Butko VY, Lashley JC, Ramirez a. P. Low temperature field-effect
in crystalline organic material. 2004:5.
doi:10.1103/PhysRevB.72.081312.
7. Briseno AL, Tseng RJ, Ling MM, et al. High-performance organic
single-crystal transistors on flexible substrates. Adv Mater.
2006;18(17):2320-2324.
8. Tang Q, Li H, He M, et al. Low threshold voltage transistors
based on individual single-crystalline submicrometer-sized
ribbons of copper phthalocyanine. Adv Mater. 2006;18(1):65-68..
77
9. Tang Q, Li H, Liu Y, Hu W. High-performance air-stable n-type
transistors with an asymmetrical device configuration based on
organic single-crystalline submicrometer/nanometer ribbons. J Am
Chem Soc. 2006;128(45):14634-14639.
10. Tang Q, Li H, Song Y, et al. In situ patterning of organic
single-crystalline nanoribbons on a SiO 2 surface for the
fabrication of various architectures and high-quality
transistors. Adv Mater. 2006;18(22):3010-3014.
11. Ullah a. R, Micolich a. P, Cochrane JW, Hamilton a. R. The effect
of temperature and gas flow on the physical vapour growth of mmscale
rubrene crystals for organic FETs. 2007:8.
doi:10.1117/12.759015.
12. akenobu T, Takahashi T, Takeya J, Iwasa Y. Effect of metal
electrodes on rubrene single-crystal transistors. Appl Phys Lett.
2007;90(1):2005-2008.
13. Kim K, Kim MK, Kang HS, et al. New growth method of rubrene
single crystal for organic field-effect transistor. Synth Met.
2007;157(10-12):481-484.
14. Carrier C, Organic S, Transistors F. Charge Carrier Transport in
Single-Crystal Organic Field-Effect Transistors. 2007:27-156.
15. Zhang XH, Kippelen B. High-performance C60 n -channel organic
field-effect transistors through optimization of interfaces. J
Appl Phys. 2008;104(10):1-7..
16. Haas S, Takahashi Y, Takimiya K, Hasegawa T. High-performance
dinaphtho-thieno-thiophene single crystal field-effect
78
transistors. Appl Phys Lett. 2009;95(2):8-11.
17. Hasegawa T, Takeya J. Organic field-effect transistors using
single crystals. Sci Technol Adv Mater. 2009;10(2):024314.
18. Dong H, Wang C, Hu W. High performance organic semiconductors for
field-effect transistors. Chem Commun (Camb). 2010;46(29):5211-
5222.
19. Jiang L, Dong H, Hu W. Organic single crystal field-effect
transistors: advances and perspectives. J Mater Chem.
2010;20(24):4994.
20. Jin C, Fei H, Fei-Fei X, et al. High-performance n-channel
organic thin-film transistors based on the dual effects of
heterojunction and surface modification. Chinese Phys B.
2010;19(3):037106.
21. Yamagishi M, Tominari Y, Uemura T, Yamada K, Takeya J. Air-stable
n-channel single-crystal field-effect transistors. Jpn J Appl
Phys. 2010;49(1 Part 2).
22. Zhang L, Fakhouri SM, Liu F, Timmons JC, Ran N a., Briseno AL.
Chalcogenoarene semiconductors: new ideas from old materials. J
Mater Chem. 2011;21(5):1329.
23. Islam MM, Pola S, Tao Y-T. High mobility n-channel single-crystal
field-effect transistors based on 5,7,12,14-tetrachloro-6,13-
diazapentacene. Chem Commun (Camb). 2011;47(22):6356-6358.
24. Islam MM, Valiyev F, Lu H-F, Kuo M-Y, Chao I, Tao Y-T. High
performance single-crystal field-effect transistors based on
twisted polyaromatic semiconductor pyreno[4,5-a]coronene. Chem
79
Commun (Camb). 2011;47(7):2008-2010.
25. Dong H, Fu X, Liu J, Wang Z, Hu W. 25th Anniversary Article: Key
Points for High-Mobility Organic Field-Effect Transistors. Adv
Mater. 2013;25(43):6158-6183.
26. Jiang H, Zhang KK, Ye J, et al. Atomically flat, large-sized,
two-dimensional organic nanocrystals. Small. 2013;9(7):990-995.
27. Xie W, McGarry K a, Liu F, et al. High-Mobility Transistors Based
on Single Crystals of Isotopically Substituted Rubrene-d(28). J
Phys Chem C. 2013;117(22):11522-11529.
28. Ma Y, Gu P-Y, Zhou F, et al. Different interactions between a
metal electrode and an organic layer and their different
electrical bistability performances. RSC Adv. 2014;5(10):7083-
7089.
29. Tiekink ERT. Molecular crystals by design? Chem Commun (Camb).
2014;50:11079-11082.
30. Tseng C-W, Huang D-C, Tao Y-T. Organic Transistor Memory with a
Charge Storage Molecular Double-Floating-Gate Monolayer. ACS Appl
Mater Interfaces. 2015:150428141813001.
31. T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith and T. D.
Jones, Mat. Res. Soc. Symp. Proc.2003:771, L6.5
32. Sundar VC, Zaumseil J, Podzorov V, et al. Elastomeric Transistor
Stamps : Transport in Organic Crystals. Science (80- ).
2004;303(March):1644-1646.
33. Yamamoto T, Takimiya K. Facile Synthesis of Highly π-Extended
Heteroarenes , Application to Field-Effect Transistors. J Am Chem
80
Soc. 2007;129:2224-2225.
34. 國 立 中 央 大 學 化 學 研 究 所 碩 士 論 文 OFET 材料 : 電子豐
盈暨缺電子芳香環.