| 研究生: |
李奇 Chi Lee |
|---|---|
| 論文名稱: |
利用"紅色火龍果"開發板研究銣原子光鐘超精細躍遷 Using the "red pitaya" development board to study the rubidium atomic optical clock transition |
| 指導教授: |
鄭王曜
Wang-Yau Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 電光調製鎖頻 、銣原子 、FPGA 、雙光子躍遷 、賽曼效應 |
| 外文關鍵詞: | Electro-optical modulation frequency locking, Rubidium, FPGA, two photon transition, Zeeman effect |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銣原子 5S 1/2→ 5D 5/2在光鐘或是光譜學上有著舉足輕重的地位。藉由交叉譜線取得銣原子的掃描譜線結果為本實驗的主要分析對象。
本實驗使用 Optromix 公司生產的 Optromix-SFE-778-0200-FS CW Laser。並使用 PDH(Pound-Drever-Hall) 系統減少雷射的抖動。之後用紅色火龍果開發版(後面簡稱 red pitaya) 進行解調與回授讓雷射可以透過電光調制器將雷射鎖在銣原子的交叉譜線上,透過改變調制頻率進而改變雷射頻率來完成掃描譜線。最後和使用原本儀器的掃描譜線數據進行比較。
為了能夠盡可能的減少線寬,例: 碰撞增寬、賽曼增寬 (Zeeman broadening),來提高進行 red pitaya 與原本儀器的掃描譜線數據比較時的靈敏度,因而架設了一個真空氣室與消除環境磁場的亥母霍茲線圈。用真空幫浦抽氣到至少 10^−7,並用全金屬閥門將銣原子安瓿封存,使其中的銣原子能依照需要分批使用。
最終雖然能夠進行鎖頻與掃描譜線,但是線寬和中心頻率有增寬和偏移。未來目標能在足夠修正 red pitaya 程式或是外加電路的情形下得到和原本儀器下一樣的線寬與中心頻率並進行更進一步的自動化應用。
This experiment utilized the Optromix-SFE-778-0200-FS CW Laser produced by Optromix. A Pound-Drever-Hall (PDH) system was employed to reduce laser jitter. Subsequently, red pitaya was used for demodulation and feedback, allowing the laser to be locked onto the crossover line of rubidium atoms through an electro-optic modulator. The frequency of the laser was then tuned by changing the modulation frequency to achieve frequency sweeping. Finally, the results were compared with the frequency sweep data obtained from the original instrument.
To minimize errors during comparison, a vacuum chamber and a Helmholtz coil to eliminate environmental magnetic fields were set up. The vacuum pump evacuated the chamber to at least 10^−7 torr, and rubidium atom ampoule were
sealed with all-metal valve, allowing the rubidium atoms to be used in batches as needed.
In the end, although frequency locking and spectral line scanning can be performed, the line width and center frequency are broadened and shifted. The future
goal is to obtain the same linewidth and center frequency as the original instrument by sufficiently modifying the red pitaya program or adding external circuits, and enable further automated applications.
[1] M. A. Luda, M. Drechsler, C. T. Schmiegelow, and J. Codnia, “Compact embedded device for lock-in measurements and experiment active control,” Review of Scientific Instruments, vol. 90, no. 2, 2019.
[2] S. Kokkelmans, B. Verhaar, K. Gibble, and D. Heinzen, “Predictions for laser-cooled rb clocks,” Physical Review A, vol. 56, no. 6, p. R4389, 1997.
[3] R. Paschotta, “Optical clockworks.” RP Photonics Encyclopedia. Available online at https://www.rp-photonics.com/optical_clockworks.html.
[4] R. Paschotta, “Optical clocks.” RP Photonics Encyclopedia. Available online at https://www.rp-photonics.com/optical_clocks.html.
[5] F. Nez, F. Biraben, R. Felder, and Y. Millerioux “Optical frequency determination of the hyperfine components of the 5s12 − 5d32 two-photon transitions in rubidium,”
Optics communications, vol. 102, no. 5-6, pp. 432–438, 1993.
[6] T. T. Grove, V. Sanchez-Villicana, B. Duncan, S. Maleki, and P. Gould, “Two-photon two-color diode laser spectroscopy of the rb 5d5/2 state,” Physica Scripta, vol. 52, no. 3, p. 271, 1995.
[7] Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. De Beauvoir, “Towards an accurate frequency standard at λ778 nm using a laser diode stabilized on a hyperfine component of the doppler-free two-photon transitions in rubidium,” Optics communications, vol. 108, no. 1-3, pp. 91–96, 1994.
[8] D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. De Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5s12 (f= 3)- 5d52 (f=
5) two-photon transition in rubidium,” Optics communications, vol. 133, no. 1-6, pp. 471–478, 1997.
[9] O. Terra and H. Hussein, “An ultra-stable optical frequency standard for telecommunication purposes based upon the 5s 1/2→ 5d 5/2 two-photon transition in rubidium,” Applied Physics B, vol. 122, pp. 1–12, 2016.
[10] A. Strangfeld, B. Wiegand, J. Kluge, M. Schoch, and M. Krutzik, “Compact plug and play optical frequency reference device based on doppler-free spectroscopy of rubidium vapor,” Optics Express, vol. 30, no. 7, pp. 12039–12047, 2022.
[11] E. Aherna, S. Scholtena, C. Lockea, N. B. Hébert, C. Perrellaa, and A. Luitena, “Development of a compact optical clock for small satellite applications,” SmartSat CRC, 2023.
[12] C.-H. Chu et al., 銣原子光鐘絕對頻率之量測. PhD thesis, National Central University, 2022.
[13] Y.-J. SHIH et al., 無頻率調制銣原子光鐘之研究. PhD thesis, National Central University, 2020.
[14] D. A. Steck, “Rubidium 87 d line data, daniel a. steck, available online at http:// steck.us/alkalidata,” 2001.
[15] P. J. Mohr and B. N. Taylor, “Codata recommended values of the fundamental physical constants: 1998,” Reviews of modern physics, vol. 72, no. 2, p. 351, 2000.
[16] E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Reviews of Modern Physics, vol. 49, no. 1, p. 31, 1977.
[17] 張家維, “於高真空中量測銫原子 6s 1/2−6d 3/2 雙光子躍遷頻率,” 2024.
[18] C.-M. Wu, T.-W. Liu, and W.-Y. Cheng, “Quantum interference in two-photon spectroscopy for laser stabilization and cesium-cell comparison,” Physical Review
A, vol. 92, no. 4, p. 042504, 2015.
[19] 吳建明, “光頻梳雷射系統與銫原子 6s-8s 雙光子躍遷光譜,” 2014.
[20] R. Chicireanu, K. D. Nelson, S. Olmschenk, N. Lundblad, A. Derevianko, and J. V. Porto, “Differential light-shift cancellation in a magnetic-field-insensitive transition
of rb 87,” Physical review letters, vol. 106, no. 6, p. 063002, 2011.