| 研究生: |
賴聲泓 Sheng-Hong Lai |
|---|---|
| 論文名稱: |
Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method |
| 指導教授: |
黃楓南
Feng-Nan Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 平行計算 、多項式型 、特徵值 、有限元素法 |
| 外文關鍵詞: | finite element method, acoustic, eigenvalue, precondition, additive Schwarz, Jacobi-Davidson method |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在我們日常生活周遭隨處可遇到有關於聲音的問題。例如開車時、搭公車時或搭飛機時。這些問題可以經由數學模型來描述聲音在一些吸振材質加入之下的振動情況,再經由有限元素法離散之後可以得到一個多項式型的特徵值問題。在部份應用中,我們有興趣找出一些低頻率的特徵值,但這些特徵值通常都落在頻譜的內部。並且當網格切的非常細的時後,特徵值問題的維度會變成相當地大。所以我們需要一個可平行化的工具來解這種大型稀疏的多項式特徵值問題。Jacobi-Davidson 演算法提供了一個快速並且有效率的方式來解出這類問題的內部特徵值。我們在 additive Schwarz 的架構下平行化實作 acobi-Davidson 演算法,並且用來解由聲音的問題所產生的多項式型的特徵值問題。經由數值實驗結果,我們列出了一些 additive Schwarz preconditioned Jacobi-Davidson 的平行效能。在解 correction equation 時,經由 Krylov-Schwarz 演算法的幫助之下,Jacobi-Davidson 的效率有著顯著的進步。
The acoustic problems usually happens around us in our daily life when we drive a car, take a bus or take a plane. From the problems of acoustic vibrations with damping, a polynomial eigenvalue problem is obtained by applying the Galerkin finite element method. For particular applications, we are interested in finding some selected low frequency eigenvalues which are located within the interior of the spectrum. The size of the resulting eigenproblem is typically large especially for very fined mesh case so that the parallel polynomial eigensolver is need to deal with such problem. The Jacobi-Davidson method provides a fast and efficient manner for solving the interior eigenvalues for the large sparse polynomial eigenvalue problems. We proposed an Jacobi-Davidson method based on an additive Schwarz framework in parallel implementation and used it to solve the polynomial eigenvalue problem arising from the acoustic. And we showed some parallel performance of the additive Schwarz preconditioned Jacobi-Davidson method by numerical experiments. With help of Krylov-Schwarz algorithm for the correction equation, the efficiency of JD algorithm is greatly improved.
[1] Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc Web page, 2001. http://www.mcs.anl.gov/petsc.
[2] A. Bermudez, R. G. Duran, and J. Rodriguez, R. Solomin. Finite element analysis of a quadratic eigenvalue problem arising in dissipative acoustics. SIAM J. Numer. Anal., 38:267–291, 2000.
[3] J.G.L. Booten, H.A. van der Vorst, P.M. Meijer, and H.J.J. te Riele. A Preconditioned Jacobi-Davidson Method for Solving Large Generalized Eigenvalue Problems. Centrum voor Wiskunde en Informatica, 1994.
[4] T.-M. Huang W. Wang F.-N. Hwang, Z.-H. Wei. A parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation. Journal of Computational Physics, 229:2932 – 2947, 2010.
[5] D.R. Fokkema, G.L.G. Sleijpen, and H.A. van der Vorst. Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput., 20:94–125, 1998.
[6] M.B. Van Gijzen. The parallel computation of the smallest eigenpair of an acoustic problem with damping. Int. J. Numer. Meth. Engng., 45:765–777, 1999.
[7] D.R. Fokkema H.A. van der Vorst G.L.G. Sleijpen, A.G.L. Booten. Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT, 36:595–633, 1996.
[8] J.-S. Guo, W.-W. Lin, and C.-S. Wang. Numerical solutions for large sparse quadratic eigenvalue problems. Linear Algebra Appl., 225:57–89, 1995.
[9] V. Hernandez, J.E. Roman, A. Tomas, and V. Vidal. SLEPc home page. http://www.grycap.upv.es/slepc, 2006.
[10] M. Hochbruck and D. Lochel. A multilevel Jacobi-Davidson method for polynomial pde eigenvalue problems arising in plasma physics. SIAM J. Sci. Comput., 06 2010.
[11] T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, 2000.
[12] M. Nool and A. van der Ploeg. A parallel Jacobi-Davidson-type method for solving large generalized eigenvalue problems in magnetohydrodynamics. SIAM J. Sci. Comput., 22:95–112, 2000.
[13] A. Bermudez R. Rodriuez. Modelling and numerical solution of elastoacoustic vibrations with interface damping. Int. J. Numer. Meth. Engng., 46:1763–1779, 1999.
[14] Y. Saad. Numerical methods for large eigenvalue problems. Manchester University Press, 1992.
[15] G.L.G. Sleijpen and H.A. van der Vorst. A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl., 17:401–425, 1996.
[16] G.L.G. Sleijpen and H.A. van der Vorst. A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM Rev., 42(2):267–293, 2000.
[17] T. Betcke, N.J. Higham, V. Mehrmann, C. Schroder, F. Tisseur. NLEVP: A collection of nonlinear eigenvalue problems. April 2008.
[18] J.-L. Liu W. Wang T.-M. Hwang, W.-W. Lin. Jacobi-Davidson methods for cubic eigenvalue problems. Numer. Linear Algebra Appl., 12:605–624, 2005.
[19] W.-C. Wang W. Wang T.-M. Hwang, W.-W. Lin. Numerical simulation of three dimensional pyramid quantum dot. J. Comput. Phys., 196:208–232, 2004.
[20] F. Tisseur. Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl., 309:339–361, 2000.
[21] Meerbergen K. Tisseur, F. The quadratic eigenvalue problem. SIAM Rev., 43(2):235–286, 2001.
[22] H. Voss. A Jacobi-Davidson method for nonlinear and nonsymmetric eigenproblems. Comput. & Structures, 85(17-18):1284–1292, 2007.
[23] W.-W. Lin J.-L. Liu W. Wang, T.-M. Hwang. Numerical methods for semiconductor heterostructures with band nonparabolicity. J. Comput. Phys., 190:141–158, 2003.
[24] M. Sarkis X.-C. Cai. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput, 21:792–797, 1999.