跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪子迪
Zu-Di Hung
論文名稱:
Organic-Inorganic Hybrid Electrolytes Based on PPG-PEG-PPG Diamine, Alkoxysilanes, and Lithium Perchlorate
指導教授: 高憲明
Kao-hsein ming
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 95
語文別: 中文
論文頁數: 119
中文關鍵詞: 電解質
外文關鍵詞: elec
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究添加不同比例聚矽氧烷 3-Glycidoxypropyl -trimethoxysilane(GLYMO)、3-(triethoxysilyl)propyl-isocyanate(ICPTES) 與高分子 ED2000反應生成乾式固態高分子電解質所造成的物性變化,以及在不同 Lithium perchlorate (LiClO4) 濃度下對導電行為的影響。
    在鑑定方面主要分為幾個不同部分探討,首先藉由固態核磁共振(SSNMR) 與 FT-IR 確定高分子整體結構。再用 DSC 及 TGA 來觀察高分子的 Tg 變化與熱穩定性質,可與導電度結果作ㄧ比較。並用 SEM 幫助了解固態電解質表面型態及使用交流阻抗 (AC-impedance) 分析固態電解質在不同溫度下的離子導電度。另外利用固態核磁共振 (SSNMR) 研究鋰離子在固態電解質中的傳導機制與運動情形。
    研究發現固態電解質在不同鋰鹽濃度下 Tg 會隨著鋰鹽濃度增加而上升,由導電度可發現隨著溫度不同會有明顯變化,主要是遵循 VTF model。另外,利用固態核磁共振 (SSNMR) 的 7Li T1 (自旋-晶格緩解時間) 及 7Li 譜寬實驗發現都有明顯的變化,證明在高分子中摻入鋰鹽的確會造成高分子之形態發生改變,對照 7Li 擴散係數實驗與導電度作ㄧ比較發現具有較高擴散係數的樣品同時具有較好的導電度,代表鋰離子在固態電解質中的傳遞情形與導電度有絕對的關聯。另外,在不同鋰鹽濃度下由 13C CP/MAS NMR 改變接觸時間實驗得知鋰離子和高分子鏈段形成暫時性鍵結導致高分子鏈運動變慢或者是分佈變廣而導致。藉由本研究可更深入了解鋰離子在固態電解質中的傳導情形,對於之後此領域的研究相信會有幫助。


    A novel organic-inorganic hybrid electrolyte based on the formation of ureasils through the reaction in different ratios of poly (propylene glycol)-block-poly (ethylene glycol)-block-poly (propylene glycol) bis (2-aminopropyl ether) (ED2000) with 3-isocyanatopropyltriethoxysilane (ICPTES), followed by the via the co-condensation of 3-Glycidoxypropyl -trimethoxysilane (GLYMO) in the presence of LiClO4, has been prepared.
    The structure and functionality of the materials thus obtained were characterized a variety of techniques including alternating current impedance, FT-IR spectroscopy, differential scanning calorimetry, and multinuclear solid-state NMR spectroscopy. The results of DSC measurements indicate the formation of transient cross-links between Li+ ions and the ether oxygens on complexation with LiClO4, resulting in an increase in the soft segment Tg. Behavior of ionic conductivity is Vogel-Tammann-Fulcher (VTF)-type. Solid-state NMR was used to probe the structure and dynamics of organic and inorganic components in the hybrid electrolyte and 13C cross-polarization/magic angle spinning NMR results from variable contact time measurements indicated that a significant decrease in the mobility of the polymer chains as the salt content was increased. 7Li NMR characterization was performed to study ionic mobility by measuring spectral line widths, T1 relaxation times, and diffusion coefficients. The results of the lithium diffusion coefficient measurements indicated that the ionic conductivity in the present electrolytes was mainly dominated by the mobility of the lithium cations.

    中文摘要……………………………………………………………………… I 英文摘要……………………………………………………………………… III 謝誌…………………………………………………………………………… IV 目錄…………………………………………………………………………… V 圖目錄………………………………………………………………………… VII 表目錄………………………………………………………………………… VIII 第壹章 序論………………………………………………………………….. 1 1-1. 簡介…………………………………………………………………... 1 1-2. 文獻回顧……………………………………………………............... 4 1-2-1. 高分子電解質…………………………………………………… 4 1-2-2. 固態高分子電解質……………………………………………… 5 1-2-3. 膠態高分子電解質……………………………………………… 7 1-2-4. 聚胺基甲酸酯…………………………………………………… 8 1-2-5. 微相分離理論………………………………………………….... 10 1-2-6. Polyurea 應用………………………………………………….… 11 1-2-7. 有機無機混成材料…………………………………………….... 12 1-2-8. 溶膠-凝膠法…………………………………………………....... 14 1-2-9. 高分子複合材料………………………………………………… 17 1-2-10. 有機矽高分子………………………………………….………. 18 第貳章 研究規劃…………………………………………………….………. 21 2-1. 研究目的…………………………………………………………....... 21 2-1-1. 有機無機混成之乾式固態高分子電解質……………………… 21 2-2. 研究架構……………………………………………………………... 21 第叁章 實驗部分與儀器原理……………………………………………….. 23 3-1. 實驗藥品……………………………………………………………... 23 3-2. 儀器設備……………………………………………………………... 24 3-3. 高分子電解質膜之製備……………………………………………... 24 3-3-1. 乾式固態高分子電解質膜之製備……………………………… 24 3-4. 儀器分析原理及操作條件…………………………………………... 27 3-4-1. X光繞射儀………………………………………………………. 27 3-4-1-1. 原理…………………………………………………………. 27 3-4-2. 微差掃瞄熱卡計………………………………………………… 27 3-4-2-1. 原理…………………………………………………………. 27 3-4-3. 熱重量分析儀…………………………………………………… 29 3-4-3-1. 原理…………………………………………………………. 29 3-4-5. 傅立葉紅外線吸收光譜儀……………………………………… 31 3-4-5-1. 原理…………………………………………………………. 31 3-4-6. 交流阻抗分析儀………………………………………………… 31 3-4-6-1. 原理…………………………………………………………. 31 3-4-7. 固態核磁共振光譜儀…………………………………………… 34 3-4-7-1. 原理…………………………………………………………. 34 3-4-7-2. 常用固態核磁共振技術…………………………………..... 35 第肆章 結果與討論……………………………………………………….... 47 4-1. 乾式固態高分子電解質……………………………………………... 47 4-1-1. X-ray 粉末繞射圖譜分析……………………………………….. 48 4-1-2. 微差掃瞄熱卡計分析…………………………………………… 50 4-1-3. 熱重量分析……………………………………………………… 57 4-1-4. 紅外吸收光譜之鑑定…………………………………………… 61 4-1-5. 電解質膜之表面分析…………………………………………… 71 4-1-6. 固態高分子電解質之導電度量測……………………………… 75 4-1-7. 固態核磁共振光譜分析………………………………………… 85 4-1-7-1. 29Si MAS NMR........................................................................ 86 4-1-7-2. 13C CP / MAS NMR................................................................. 89 4-1-7-3. 1H/13C 2D WISE NMR............................................................ 95 4-1-7-4. 7Li 譜寬分析………………………………………………... 99 4-1-7-5. 7Li-{1H} MAS NMR................................................................ 103 4-1-7-6. 7Li T1 緩解時間之量測………………………………….. 107 4-1-7-7. 7Li 擴散常數之量測………………………………………... 109 第伍章 結 論………………………………………………………………… 115 參考文獻……………………………………………………………………… 116

    (1) 鄭伃君. 零組件雜誌. 2004, 十月號, 頁33
    (2) 費定國、高昀成 “碳材料在鋰電池之發展與應用” 工業材料 121期, 頁80
    (3) Capiglia, C.; Saito, Y.; Yamamoto, H.; Kageyama, H.; Mustarelli, P. Electrochim. Acta 2000, 45, 1341.
    (4) Saito, Y.; Capiglia, C.; Yamamoto, H.; Mustarelli, P. J. Electrochem. Soc. 2000, 147, 1645.
    (5) Michot, T.; Nishimoto, A.; Watanabe, M. Electrochim. Acta 2000, 45, 1347.
    (6) Fenton, D. E.; Parker, J. M.; Wright, P. V. Polymer 1973, 14, 589.
    (7) Armand, M. B.; Chabagno, J. M.; Duclot, M. Extended Abstract, St.
    Andrews, Scotland, 1978, September 20.
    (8) Armand, M. B.; Chabagno, J. M.; Duclot, M.; Vashista, P.; Mundy, J. N.; Shenoy, G. K. Elsevier, North-Holland, Amsterdam, Netherlands 1979, 131-136.
    (9) MacCallum, J. R.; Vincent, C. A. Polymer Electrolyte Reviews-1, Elsevier Applied Science, London,UK 1987.
    (10) MacCallum, J. R.; Vincent, C. A. Polymer Electrolyte Reviews-1, Elsevier Applied Science, London,UK 1989.
    (11) Borkowska, R.; Laskowski, J.; Plocharski, J.; Przyluski, J.Wieczorek, W. J. Appl. Electrochem. 1993, 23, 991.
    (12) Quartarone, E.; Mustarelli, P.; Magistris, A. Solid State Ionics 1998, 110, 1-14.
    (13) Wieczorek, W.; Stevens J. R. J .Phys. Chem. B 1997, 101, 1529.
    (14) Booth, C.; Nicholas, C. V.; Wilson, D. J. Elsevier Applied Science, London, UK 1989.
    (15) LeNest, J. F.; Callens, S.; Gandini, A.; Armand M. Electrochim. Acta 1992, 37, 1585.
    (16) Ito, Y.; Kanehori, K.; Miyauchi, K.; Kudo T. J. Mater. Sci. 1987, 22, 1845.
    (17) Abraham, K. M.; Alamgir, M.; U.S. Patent No. 5,219,679 1993.
    (18) Croce, F.; Gerace, F.; Dautzenberg, G.; Passerini, S.; Appetecchi, G. B.; Scrosati, B. Electrochim. Acta 1994, 39, 2187.
    (19) Slane, S.; Salomon, M. J. Power Sources 1995, 55, 7.
    (20) Dautzenberg, G.; Croce, F.; Passerini, S.; Scrosati, B. Chem. Mater. 1994, 6, 538.
    (21) Peramunage, D.; Pasquariello, D. M.; Abraham, K. M. J. Electrochem. Soc. 1995, 142, 1789.
    (22) Choe, H. S.; Carroll, B. G.; Pasquariello, D. M.; Abraham, K. M. Chem. Mater. 1997, 9, 369.
    (23) Croce, F.; Brown, S. D.; Greenbaum, S. G.; Slane, S.; Salomon, M. Chem. Mater. 1993, 5, 1268.
    (24) Stallworth, P. E.; Greenbaum, S. G.; Croce, F.; Slane, S.; Salomon, M. Electrochim. Acta 1995, 40, 2137.
    (25) Liu, X.; Osaka, T. J. Electrochem. Soc. 1997, 144, 3066.
    (26) Quartarone, E.; Tomasi, C.; Mustarelli, P.; Appetecchi, G. B.; Croce, F. Electrochim. Acta 1998, 43, 1435.
    (27) Hung, C. H. Chemistry 1999, 57, 175.
    (28) Wright, P. V.; Fenton, D. E.; Parke, J. M. Polymer 1973, 14, 589.
    (29) Armand, M.; Chabagno, J. M.; Duclot, M. Second International Meeting on Solid Eletrolytes, St. Andrews, Scotland, Extended Abstracts 1978.
    (30) Berthier, C.; Gorecki, W.; Minier, M.; Armand, M. B.; Chabagno, J. M.; Rigaud, P. Soild State Ionics 1983, 11, 91.
    (31) Shriver, D. F.; Ratner, M. A. Chem. Rev. 1988, 245, 4.
    (32) Bohnke, O. ; Rousselet, C. ; Gillet, P. A. ; Truche, C. J.Electrochem. Soc. 1992, 139, 1862
    (32) Bates, J. B.; Dudney, N. J.; Neuducker, B.; Vada, A. and Evans, C. D.Solid State Ionic, 2000, 135, 33
    (33) Abraham, K. M. and Alamgir, M. Solid State Ionics, 1994, 70, 20
    (34) Hiemenz, P. C. Polymer Chemistry 1984, 9-12.
    (35) Besenhard, J. O. In Handbook of Battery Materials 1999.
    (36) Lowe, I. J. Phys. Rev. Lett. 1959, 2, 285.
    (37) Pines, A.; Gibby, M. G.; Waugh, J. S. J. Chem. Phys. 1972, 56, 1776.
    (38) 高憲明, NMR化工技術
    (39) Jannasch, P. Electrochim. Acta 2001, 46, 1641.
    (40) Liang, W. J.; Kuo, P. L. Polymer 2004, 45, 1617.
    (41) Liang, W.- J.; Kuo, C.- L.; Lin, C.- L.; Kuo, P.- L. J. Polym. Sci. Pol. Chem. 2002, 40, 1226.
    (42) Münchow, V.; Noto, V. D.; Tondello, E. D.; Electrochim. Acta 2000, 45, 1211.
    (43) van Heumen, J. D.; Steven, J. R. Macromolecules 1995, 28, 4268.
    (44) Fish, D.; Khan, I. M.; Wu, E.; Smid, J. Br. Polym. J. 1988, 20, 281.
    (45) Nagaoka, K.; Naruse, H.; Shinohara, I.; Watanabe, M. J. Polym. Sci., Polym. Lett. Ed. 1984, 22, 659.
    (46) Ogumi, Z.; Uchimoto, Y.; Takehara, Z. Solid State Ionics, 1989, 35, 417.
    (47) 林佳良, 國立成功大學碩士論文, 2002
    (48) Frech, R.; Manning, J.; Teeters, D.; Black, B. E.; Solid State Ionics. 1988, 954, 28.
    (49) Beshah, K.; Mark, J. E.; Ackerman, J. L. Macromolecules, 1986, 19, 2194.
    (50) O’Gara, J. F.; Nazri, G.; MacArthur, K. M. Solid State 1991, 47, 87.
    (51) Stejskal, E. O.; Tanner, J. E. J. Chem. Phys.1965, 42, 288.
    (52) Stilbs, P. Prog. Nucl. Magn. Reson. Spectrosc. 1987, 23, 1.
    (54) Gray, F. M.; Polymer Electrolytes 1997, The Royal Society of Chemistry, UK, Chap. 1.
    (55) Chen, W. B.; Feng, H. Q.; He, D. O.; Ye J, C. H.; Appl. Polym. Sci 1998, 67, 139.
    (56) 岩田敬治,聚胺基甲酸酯 PU 原理與實用,復漢出版社,1979,頁 1-4
    (57) Suzwki, I.; Hisamatsu, Y.; and Masuko, N.; J. Electrochem. Soc. 1980, 127, 2210.
    (58) 王宗櫚,聚合物合成與鑑定法,再版,復文書局,2000,頁 10-13
    (59) 陳志明, 國立高雄師範大學, 2003
    (60) Houk, R.H.K. Flexible polyurethane foams. Dow Chemical Company. 1990, 158.
    (61) Schoolenberger, C. S. et. al., “Rubber world”, 1958, 549.
    (62) Saunders, J. H.; Frisch, K. C., “Polyurethane, chemistry and technology”, 1959, 65.
    (63) Le Nest, J. F. ; Gandini, A. ; Cheradame, H. ; Br. Polym. J, 1998, 202, 53.
    (64) 李紹銘, 國立成功大學碩士論文, 2003
    (65) Copper, S. L.; Tobolsky, A. V. J. Appl. Polym. Sci, 1966, 10, 1837.
    (66) Van Bogart J. W. C.; Lilaonitkul, A.; Cooper, S. L. Adv Chem. Ser, 1979, 176, 3.
    (67) MacLachlan, M. J.; Manners, I.; Ozin, G. A.; Adv. Mater, 2000, 12, 675.
    (68) 林唯芳, 有機無機奈米材料, 塑膠資訊, 2001, 4.
    (69) Ebelmen, HM. Ann.Chimie.Phys, 1846, 16, 129.
    (70) Graham, T. J.Chem.Soc, 1864, 17, 318.
    (71) 黃立寧, 複合膜的製備及性能研究, 元智大學
    (72) Wang, B.; Gungor, A.; Brennan, A. B.; Rodrignes, D. E.; Mcgrath, G.L.Willkes, J. E. Polym.Prep, 1991, 32, 521.
    (73) Wei, Y.; Bakthavatchalam, R.; Yang, D. and Whitecar, C. K. Polym.Prep, 1991, 32, 503.
    (74) de Zea Bermudez, V.; Carlos, L. D. and Alca’cer, L. Chem. Mater. 1999, 11, 569.
    (75) Carlos, L. D.; de Zea Bermudez, V.; Sa’ Ferreira, R. A.; Marques, L. and Assuncao, M. Chem. Mater. 1999, 11, 581.
    (76) Groselj, N.; Gaberscek, M.; Opara Krasovec, U.; Orel, B.; Drazic, G.; Judeinstein, P. Solid State Ionics, 1999, 125, 125.
    (77) Vlasoula Bekiari and P. Lianous Chem. Mater. 2000, 12, 3095.
    (78) Tatyana Brankova, Vlasoula Bekiari, and Panagiotis Lianos, Chem. Mater. 2003, 15, 1855.
    (79) Vlasoula Bekiari and Panagiotis Lianos, Chem. Mater. 2006, 18, 4142.
    (80) Silva, M .M.; Nunes, S. C.; Barbosa, P. C.; Evans, A.; de Zea Bermudez, V.; Smith, M. J.; Ostrovskii, D. Electrochim. Acta 2006, 52, 1542.
    (81) Miriam Benitez, Debasish Das, Rita Ferreira, Uwe Pischel, and Hermenegildo Garcı´a, Chem. Mater. 2006, 18, 5597.
    (82) Bloembergen, N.; Purcell, E. M.; Pound, R. V. Phys. ReV. 1948, 73, 679.
    (83) Chung, S. H.; Jeffrey, K. R.; Stevens, J. R. J. Chem. Phys. 1991, 94, 1803.
    (84) Abragam, A.; The Principles of Nuclear Magnetism, 1961
    (85) Nilson C. Mello, Tito J. Bonagamba, Hora´ cio Panepucci, Karim Dahmouche, Patrick Judeinstein, and Michel A. Aegerter|, Macromolecules, 2000, 33, 1280.
    (86) Bronstein, L. M.; Joo, C.; Karlinsey, R.; Ryder, A. and Zwanziger, J. W. Chem. Mater. 2001, 13, 3678.
    (87) Paulo H. de Souza, Rodrigo F. Bianchi, Karim Dahmouche, Patrick Judeinstein,| Roberto M. Faria, and Tito J. Bonagamba, Chem. Mater. 2001, 13, 3685.
    (88) Jae-Deok Jeon and Seung-Yeop Kwak, Macromolecules, 2006, 39, 8027.
    (89) Andre´ L. B. S. Bathista, Eduardo R. deAzevedo, Antonio C. Bloise, Karim Dahmouche, Patrick Judeinstein, and Tito J. Bonagamba, Chem. Mater. 2007, 19, 1780.
    (90) Jason Mattia, Paul Painter, Macromolecules, 2007, 40, 1546.
    (91) Johansson, A.; Gogoll, A.; Tegenfeldt, J. Polymer 1996, 37, 1387.
    (92) Gorecki, W.; Jeannin, M.; Belorizky, E.; Roux, C.; Armand, M. J. Phys.: Condens. Matter 1995, 7, 6823.
    (93) 余慈顏, 國立台灣大學碩士論文, 1999

    QR CODE
    :::