| 研究生: |
吳羿慶 Yi-Ching Wu |
|---|---|
| 論文名稱: |
軟弱黏土模型基樁側向疲勞載重試驗 |
| 指導教授: | 黃俊鴻 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 267 |
| 中文關鍵詞: | 黏土 、模型基樁 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
離岸風機之單樁基礎在海上受風力、波浪力及地震力等反覆水平側向力之作用。黏土與砂土層受到波浪力作用時,因為環境的不同導致單樁基礎的長期受力行為出現較大的差異。本研究利用模型樁模擬單樁基礎於海上受波浪力作用下基樁之行為。
本研究以曾文水庫之黏土進行大型壓密來製作重模試體,利用模型樁進行靜態極限側向加載試驗,將試驗實測之結果加以迴歸分析求取樁身反應。再以不同應力準位之單向反覆加載試驗,觀察樁頭受力之累積殘餘位移、累積殘餘旋轉角或割線勁度等之趨勢,並透過求取樁身彎矩、土壤反力或樁身位移等,研究其樁-土互制行為。
由試驗結果可知,在靜態極限側向加載試驗中最大彎矩隨側向載重增加而增加,且樁身發生最大彎矩之深度也隨載重增加而逐漸下移。在側向反覆加載試驗中,等效勁度隨著應力準位增加而變小,應力準位越大等效勁度越快趨於平緩。最大彎矩隨著作用週數增加而增加,樁身最大彎矩之深度也隨著作用周數增加而逐漸下移。單向反覆側向加載試驗之最大彎矩比靜態極限加載試驗之成果大20-30%,最大彎矩深度則增加25-30%。側向加載使得間隙產生時,因為土壤軟化之影響,會造成樁身旋轉角超過DNV之安全之範圍,等效勁度也會下降至初始等效勁度之27%,使其安全性受到影響。
In general, the monopole of offshore wind turbine is subjected to wind load, wave load, earthquake and other repetitive lateral forces. Comparing with sand, clay typically has different geological and environmental conditions due to the existing of soft clay in the upper layer and the daily tide movement, which may lead to the considerable difference in long-term behavior of monopile.
The test specimens are prepared by remolding the silty soils from Zengwun Reservoir. The loading tests are carried out with the model pile. The test results are further analyzed to obtain pile responses by using regression analysis. The cyclic lateral loading test was applied with different stress levels to observe the trend of permanent displacement, permanent rotation angle and pile secant stiffness. Using the calculation of pile bending moment, soil reaction force or pile displacement to understanding the behavior of pile-soil interaction.
The results of the test indicated that the value of maximum moment increased when the lateral loading increased, and the depth which the maximum moment occurred is also deeper in ultimate lateral loading test. The equivalent stiffness becomes smaller as the stress level increases. The greater the stress level, the faster the equivalent stiffness tends to be gentle. The value of maximum moment increased when the lateral loading increased, and the depth which the maximum moment occurred is also deeper in cyclic lateral loading test. The greater the increase in the bending moment as the stress level becomes larger. When lateral loading causes the gap to be generated, it will cause partial cohesion and soil softening between the pile and the soil. This effect will cause the permanent rotation angle to exceed the safe range defined by DNV, which will affect the safety of offshore wind turbine.
1. API, “Recommended practice for planning, designing and construction fixed offshore platforms-working stress design,” (2005).
2. ASTM, “Standard Test Methods for Deep Foundations Under Lateral Load,” Annual Book of Standard, ASTM D3966-07, pp.1-18 (2007).
3. Ayothiraman, R., and Boominathan, A., “Depth of Fixity of Piles in Clay Under Dynamic Lateral Load,” Geotech Geol Eng, Vol. 31, pp.447-461 (2013).
4. Basack, S., and Purkayastha, R.D., “Behaviour of Single Pile under Lateral Cyclic Load in Marine Clay,” Asian Journal of Civil Engineering, Vol. 8, No. 4, pp.443-458 (2007).
5. Basack, S., “Experimental Investigation of Pile Group under Lateral Cyclic Load in Soft Cohesive Soil,” WAEAS Transactions on Applied and Theoretical Mechanics, pp.132-137 (2007).
6. Broms, B.B., “Lateral resistance of piles in cohesive soils,” ASCE, Vol. 90, pp.27-63 (1964).
7. Budhu, M., and Davies, T.G., “Analysis of laterally loaded piles in soft clays,” Journal of Geotechnical Engineering, ASCE,Vol. 114, pp.21-39 (1988).
8. Cox, W.R., Reese, L.C., and Grubbs, B.R., “Field testing of laterally loaded piles in sand,” Offshore Technology Conference, Vol. 2079, pp. 459-464 (1974).
9. Chiou, J.S., Chen, C.H., and Chen, Y.C., “Deducing pile responses and soil reactions from inclinometer data of a lateral load test,” Japanese Geotechnical Society, Vol. 48, No. 5, pp. 609-620 (2008).
10. Chin, T.Y., Sew, G.S., and Chung, F.C., “Interpretation of subgrade reaction from lateral load tests on spun piles in soft ground,” G&P Geotechnics Sdn Bhd, pp. 1-21 (2009).
11. Juan, M.M., and Juan, M.P., and Raymond, B.S., "Multi-directional cyclic p–y curves for soft clays," Ocean Engineering, Vol. 115, pp.1-18(2016).
12. Kishore, Y.N., Rao, S.N., and Mani, J.S., “The behavior of laterally loaded piles subjected to scour in marine environment,” KSCE Journal of Civil Engineering, Vol. 12, No. 6, pp.403-408 (2009).
13. Li, Z., Haigh, S.K., and Bolton, M.D., “Centrifuge modeling of mono-pile under cyclic lateral loads,” Proceedings of the Seventh International Conference on Physical Modelling in Geotechnics, Zurich, Switzerland, pp. 965-970 (2010).
14. Long, J.H., and Vanneste, G., “Effects of cyclic lateral loads on piles in sand,” Journal of Geotechnical Engineering, ASCE,Vol. 120(1), pp.225-244 (1994).
15. Liao, W., Zhang, J., Wu, J., and Yan, K., “Response of flexible monopile in marine clay under cyclic lateral load,” Ocean Engineering, Vol. 147, pp.89-106 (2018).
16. Matlock, H., “Correlations for design of laterally loaded piles in soft clay,” Offshore Technology Conference, Vol. 1204, pp. 577-588 (1970).
17. Offshore Standard DNV-OS-J101, “Design of offshore wind turbine structures,” Det Norske Veritas, Norway, pp. 189-191 (2011).
18. Palmer, L.A., and Thompson, J.B., “The earth pressure and deflection along the embedded lengths of piles subjected to lateral thrust,” Proceedings of the Second International Conference on Soil Mechanics and Foundation Engineering, Vol. 5, pp.156-161 (1948).
19. Reese, L.C., Cox, W.R., and Koop, F.D., “Analysis of laterally loaded piles in sand,” Offshore Technology Conference, Vol. 2080, pp. 473-480 (1974).
20. Reese, L.C., Cox, W.R., and Koop, F.D., “Field testing and analysis of laterally loaded piles in stiff clay,” Offshore Technology Conference, Vol. 2312, pp. 672-675 (1975).
21. Ruigrok, J.A.T., “Laterally loaded piles,” Delft University of Technology, pp. 63-84 (2010).
22. Rocscience Inc., “Laterally loaded piles theory manual,” (2018).
23. Swagata, B., Sumanta, H., “Dynamic analysis of offshore wind turbine in clay considering soil- monopole- tower interaction,” Soil Dynamics and Earthquake Engineering, Vol. 63, pp.19-35 (2014).
24. Terzaghi, K., “Elvaluation of coefficient of subgrade reaction,” Geotechnique, Vol. 5, No. 4, pp.297-326 (1955).
25. Youngho, K., Sangseom, J., and Sungjune, L., “Wedge Failure Analysis of Soil Resistance on Laterally Loaded Piles in Clay,” Journal OF Geotechnical and Geoenvironmental Engineering, pp. 678-694 (2011).
26. 王訓濤、周南山,「承受側向力之基樁與土壤之互制作用」,地工技術雜誌,第24期,第39-48頁 (1988)。
27. 內政部營建署,「建築物基礎構造設計規範」,中華民國大地工程學會,台北 (2001)。
28. 日本國有鐵道,「建造物設計標準-基礎構造物.抗土壓構造物」,第182-189頁 (1986)。
29. 日本道路協會,「道路橋示方書.同解說」,第254-257頁 (2002)。
30. 林郁庭,「以離心模型模擬離岸風機單樁受反覆水平側推之p-y曲線」,碩士論文,國立中央大學土木工程學系,中壢(2013)。
31. 張有齡、周南山,「張氏簡易側樁分析法(上篇:靜力部分)」,地工技術雜誌,第25期,第64-82頁 (1989)。
32. 許志瑋,「基樁受側向載重之模型試驗設計與分析」,碩士論文,國立中央大學土木工程學系,中壢(2015)。
33. 陳正興、黃俊鴻,「基礎性能分析」,地工技術研究發展基金會,台北(2016)。
34. 陳冠羽,「砂土中模型基樁之單向反覆側向載重試驗」,碩士論文,國立中央大學土木工程學系,中壢(2016)。
35. 莊鎰睿,「模型基樁於飽和砂土及黏性土壤中之單向反覆側向載重試驗」,碩士論文,國立中央大學土木工程學系,中壢(2018)。
36. 葉品毅,「煤灰地盤樁基礎承載行為之研究」,博士論文,國立中央大學土木工程學系,中壢(2015)。
37. 楊鈞翔,「飽和砂土中模型基樁之單向反覆側向載重試驗」,碩士論文,國立中央大學土木工程學系,中壢(2017)。
38. 賴坤成,「基樁負摩擦力影響因素之模型試驗」,碩士論文,國立中央大學土木工程學系,中壢(2009)。