跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李庭儀
Ting-Yi Lee
論文名稱: 農桿菌1D1609腫瘤誘生質體上的冷休克蛋白基因簇之實驗與生物資訊分析
Experimental and Bioinformatic Characterization of a Cold Shock Protein Gene Cluster on the Tumor-inducing Plasmid (pTi) of Agrobacterium tumefaciens 1D1609
指導教授: 郭志鴻
Chih-Horng Kuo
吳少傑
Shaw-Jye Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 57
中文關鍵詞: 農桿菌冷休克蛋白腫瘤誘生質體
外文關鍵詞: Agrobacterium tumefacien, Cold Shock Protein, tumor inducing plasmid
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 農桿菌為一種植物病原細菌,可以將其DNA嵌入受感染宿主的染色體中,是一種重要的基因轉形生物技術工具。為了提高轉殖效率和拓展植物宿主範圍,更深入解細菌與宿主之間的分子相互作用有其重要性。前人研究發現有一個位於農桿菌1D1609菌株腫瘤誘導質體上的冷休克蛋白基因簇會在毒力誘導時有較高的表現量。因為冷休克蛋白是會被植物免疫系統識別的病原體分子標記,因此推論這個基因簇可能會影響感染效率。為驗證此假說,本研究建構剔除此基因簇的突變株,用來與野生型1D1609菌株進行比較。在圓葉煙草的農桿菌滲入法實驗中,野生型菌株對6週齡植株的感染效率顯著低於對4週齡植株的感染效率。此結果符合預期,因前人研究已發現圓葉煙草在接近開花期時可產生較高的免疫反應。相較之下,兩個突變株皆對 4 週齡和6 週齡植株有相近於與野生型對4週齡植株的感染效率,而此結果可支持本研究之假說。根據比較基因體學分析,這個基因簇普遍存在於不同農桿菌屬物種的第二型腫瘤誘導質體中且具有高度相似序列,亦部分存在於第三型腫瘤誘導質體中且具有中度相似序列。根據此發現可推論,此基因簇的剔除可能可用於改善農桿菌屬其他物種及菌株在圓葉煙草接近開花期時的短暫轉形。總結而言,本研究為此基因簇參與農桿菌與植物宿主的分子相互作用提供實驗證據。但此基因簇中四個基因的個別功能仍須未來研究釐清,而所得之知識預期將可應用於進一步改善利用農桿菌進行的基因轉形。


    Agrobacterium tumefaciens is a plant pathogen that could insert its DNA into the chromosome of infected hosts, and is an important biotechnology tool for genetic transformation. To improve the transformation efficiency and plant host range, it is important to understand the molecular interactions between this bacterium and its hosts. In a previous study, a cold shock protein gene cluster located on the tumor-inducing plasmid (pTi) of A. tumefaciens 1D1609 was found to be up-regulated upon virulence induction. Because cold-shock proteins were reported to be pathogen-associated molecular patterns (PAMPs) recognized by the plant immune system, we hypothesize that this gene cluster may encode antivirulence factors that affect the infection efficiency. To test this hypothesis, we generated the deletional mutants, Δcspgc-1 and Δcspgc-2 that both lack this gene cluster for comparisons with wild-type 1D1609. For agroinfiltration in leaves of Nicotiana benthamiana, the transient transformation efficiency of the wild-type in 6-week-old plants is significantly lower than in 4-week-old plants, which is consistent with the expectation based on the high immune responses in restricting genetic transformation when it reaches the flowering stage. In comparison, both deletional mutants have similar transformation efficiencies in 4-week-old and 6-week-old plants as the wild-type in 4-week-old plants, supporting our hypothesis. Further comparative genomics analysis revealed that this gene cluster is highly conserved among all type II pTi and partially conserved among type III pTi found in different Agrobacterium species. This finding suggests that deletion of this gene cluster may be applied to improve transient transformation in older N. benthamiana plants using other Agrobacterium species and strains. In conclusion, this study provided evidence for the involvement of this gene cluster in Agrobacterium-plant interactions. For future studies, functional characterization of each gene in this four-gene cluster is necessary to understand their roles. The knowledge may contribute to future improvements of Agrobacterium-mediated transformation.

    中文摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Figures vi List of Tables vii 1. Introduction 1 1.1 Introduction of Agrobacterium tumefaciens 1 1.2 Agrobacterium-plant interaction 1 1.3 Identification of candidate genes controlling Agrobacterium virulence 2 1.4 Pathogen-associated-molecular patterns (PAMP) 3 1.5 Hypothesis 4 2. Materials and methods 5 2.1 Cold shock protein of 1D1609 5 2.1.1 Cold shock protein epitope alignment 5 2.1.2 Promoter prediction 5 2.2 Generation of deletional mutant 5 2.2.1 Competent cell prepration 5 2.2.2 Homologous recombination 6 2.2.3 RNA extraction and quantitative PCR 7 2.3 Phenotyping of transformation efficiency 7 2.3.1 AGROBEST 7 2.3.2 Agroinfiltration of Nicotiana benthamiana 9 2.3.3 Tumor assay on Nicotiana benthamiana stems 10 2.4 CSP gene clusters of other pTi 10 2.4.1 Synteny plot 10 2.4.2 Cold shock protein epitope alignment and phylogeny 10 3. Result and Discussion 11 3.1 Cold shock protein of 1D1609 11 3.1.1 Cold shock protein epitope alignment 11 3.1.2 Promoter prediction 11 3.2 Compare wild-type and deletion mutants 12 3.2.1 Double crossover result 12 3.2.2 RNA expression 12 3.3 Phenotyping of transformation efficiency 13 3.3.1 AGROBEST 13 3.3.2 Agroinfiltration 14 3.3.3 Tumor assay 15 3.4 CSP gene cluster of other Agrobacterium pTi 16 3.4.1 Cold shock protein gene cluster 16 3.4.2 Cold shock protein 16 4. Conclusions 17 5. References 18 6. Figures 21 7. Tables 32

    1. Smith, E.F. and C.O. Townsend, A PLANT-TUMOR OF BACTERIAL ORIGIN. Science, 1907. 25(643): p. 671-3.
    2. Keane, P., A. Kerr, and P. New, Crown Gall of Stone Fruit II. Identification and Nomenclature of Agrobacterium Isolates. Australian Journal of Biological Sciences, 1970. 23(3): p. 585-596.
    3. Kaeberlein, M., Aging, Genetics of, in Brenner's Encyclopedia of Genetics (Second Edition), S. Maloy and K. Hughes, Editors. 2013, Academic Press: San Diego. p. 48-50.
    4. Wayne, L.G., et al., Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. International Journal of Systematic and Evolutionary Microbiology, 1987. 37(4): p. 463-464.
    5. Stackebrandt, E., et al., Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, 2002. 52(Pt 3): p. 1043-1047.
    6. Gelvin, S.B., Agrobacterium in the genomics age. Plant Physiology, 2009. 150(4): p. 1665-76.
    7. Weisberg, A.J., et al., Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science, 2020. 368(6495).
    8. Ooms, G., et al., Grown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions. Gene, 1981. 14(1-2): p. 33-50.
    9. Stachel, S.E. and E.W. Nester, The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. The EMBO Journal, 1986. 5(7): p. 1445-54.
    10. Ulker, B., et al., T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nature Biotechnology, 2008. 26(9): p. 1015-7.
    11. Staskawicz, B.J., et al., Molecular genetics of plant disease resistance. Science, 1995. 268(5211): p. 661-7.
    12. Caplan, A., et al., Introduction of genetic material into plant cells. Science, 1983. 222(4625): p. 815-21.
    13. Hoekema, A., et al., A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature, 1983. 303(5913): p. 179-180.
    14. Parke, D., L.N. Ornston, and E.W. Nester, Chemotaxis to plant phenolic inducers of virulence genes is constitutively expressed in the absence of the Ti plasmid in Agrobacterium tumefaciens. Journal of Bacteriology, 1987. 169(11): p. 5336-8.
    15. Ashby, A.M., et al., Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. Journal of Bacteriology, 1988. 170(9): p. 4181-7.
    16. Hawes, M.C. and L.Y. Smith, Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. Journal of Bacteriology, 1989. 171(10): p. 5668-71.
    17. Shaw, C.H., et al., Isolation and characterization of behavioural mutants and genes of Agrobacterium tumefaciens. Microbiology, 1991. 137(8): p. 1939-1953.
    18. Stachel, S.E., et al., Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 1985. 318(6047): p. 624-629.
    19. Palmer, A.G., et al., Chemical biology of multi-host/pathogen interactions: chemical perception and metabolic complementation. The Annual Review of Phytopathology, 2004. 42: p. 439-64.
    20. McCullen, C.A. and A.N. Binns, Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annual Review of Cell and Developmental Biology, 2006. 22: p. 101-27.
    21. Fronzes, R., P.J. Christie, and G. Waksman, The structural biology of type IV secretion systems. Nature Reviews Microbiology, 2009. 7(10): p. 703-14.
    22. Voth, D.E., L.J. Broederdorf, and J.G. Graham, Bacterial Type IV secretion systems: versatile virulence machines. Future Microbiology, 2012. 7(2): p. 241-57.
    23. Cascales, E. and P.J. Christie, The versatile bacterial type IV secretion systems. Nature Reviews Microbiology, 2003. 1(2): p. 137-49.
    24. Chandran, V., et al., Structure of the outer membrane complex of a type IV secretion system. Nature, 2009. 462(7276): p. 1011-1015.
    25. Lai, E.M., et al., Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. Journal of Bacteriology, 2000. 182(13): p. 3705-16.
    26. Jones, H.D., A. Doherty, and H. Wu, Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods, 2005. 1(1): p. 5.
    27. Lee, L.Y. and S.B. Gelvin, T-DNA binary vectors and systems. Plant Physiology, 2008. 146(2): p. 325-32.
    28. Haryono, M., et al., Differentiations in Gene Content and Expression Response to Virulence Induction Between Two Agrobacterium Strains. Frontiers in Microbiology, 2019. 10: p. 1554.
    29. Hwang, H.-H., et al., Characterization and host range of five tumorigenic Agrobacterium tumefaciens strains and possible application in plant transient transformation assays. Plant Pathology, 2013. 62(6): p. 1384-1397.
    30. Nürnberger, T. and F. Brunner, Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Current Opinion in Plant Biology, 2002. 5(4): p. 318-24.
    31. Felix, G., et al., Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 1999. 18(3): p. 265-76.
    32. Kunze, G., et al., The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell, 2004. 16(12): p. 3496-507.
    33. Hanania, U. and A. Avni, High-affinity binding site for ethylene-inducing xylanase elicitor on Nicotiana tabacum membranes. The Plant Journal, 1997. 12(1): p. 113-120.
    34. Felix, G. and T. Boller, Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. The Journal of Biological Chemistry, 2003. 278(8): p. 6201-8.
    35. Baureithel, K., G. Felix, and T. Boller, Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitooligosaccharides and a Nod factor of Rhizobium. The Journal of Biological Chemistry, 1994. 269(27): p. 17931-8.
    36. Zhang, J. and J.M. Zhou, Plant immunity triggered by microbial molecular signatures. Molecular Plant, 2010. 3(5): p. 783-93.
    37. Chisholm, S.T., et al., Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006. 124(4): p. 803-14.
    38. Keto-Timonen, R., et al., Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia. Frontiers in Microbiology, 2016. 7: p. 1151.
    39. Yamanaka, K., L. Fang, and M. Inouye, The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Molecular Microbiology, 1998. 27(2): p. 247-55.
    40. Jiang, W., Y. Hou, and M. Inouye, CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. The Journal of Biological Chemistry, 1997. 272(1): p. 196-202.
    41. Phadtare, S., Recent developments in bacterial cold-shock response. Current Issues in Molecular Biology, 2004. 6(2): p. 125-36.
    42. Xia, B., H. Ke, and M. Inouye, Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Molecular Microbiology, 2001. 40(1): p. 179-88.
    43. Saur, I.M., et al., NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(12): p. 3389-94.
    44. Wang, Z., et al., RNA-seq reveals the critical role of CspA in regulating Brucella melitensis metabolism and virulence. Science China Life Science, 2016. 59(4): p. 417-24.
    45. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 2004. 32(5): p. 1792-7.
    46. Guindon, S. and O. Gascuel, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 2003. 52(5): p. 696-704.
    47. Coppens, L. and R. Lavigne, SAPPHIRE: a neural network based classifier for σ70 promoter prediction in Pseudomonas. BMC Bioinformatics, 2020. 21(1): p. 415.
    48. Wu, H.Y., et al., Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. Journal of Bacteriology, 2008. 190(8): p. 2841-50.
    49. Wu, H.-Y., et al., AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods, 2014. 10(1): p. 19.

    QR CODE
    :::