| 研究生: |
曾煜翔 Yu-Hsiang Tseng |
|---|---|
| 論文名稱: |
混燒飛灰中鋁金屬含量檢測方法建立暨濕式處理成效評估之研究 |
| 指導教授: |
黃偉慶
Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 固體再生燃料 、流體化床鍋爐 、含鋁金屬之混燒飛灰 、混燒飛灰鋁金屬快篩檢測 、混燒飛灰鋁金屬含量檢測 、濕式處理 |
| 外文關鍵詞: | Solid Recovered Fuel, Circulating Fluidized Bed Boiler, Aluminum-Containing Co-fired Fly Ash, Rapid Aluminum Content Screening Test for Co-fired Fly Ash, Content Detection in Co-fired Fly Ash, Wet Treatment |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
固體再生燃料(SRF)由可燃性廢棄物製造而來,這類廢棄物包括民生廢棄物,例如塑膠、紙張及木材等。其中,部分來源再製成固體再生燃料因有鋁箔物質存在,與燃煤於CFB鍋爐進行混燒所衍生之混燒飛灰則因殘留鋁金屬物質,使得其再利用於水泥基材料中產生高度膨脹現象。
本研究針對國內CFB鍋爐衍生之混燒飛灰進行材料性質分析,探討混燒飛灰應用於水泥基材料之膨脹因子。經研究結果顯示,混燒飛灰中之殘留鋁金屬成分於鹼性環境時,因氫氣產生進而造成試體高度膨脹。為提供鍋爐操作業者或再利用業者得以快速確認混燒飛灰具有產氫膨脹特性,建立混燒飛灰鋁金屬快篩檢測,以5分鐘試驗時間,即可有效鑑別混燒飛灰中殘留鋁金屬成分,即使混燒飛灰鋁金屬含量僅殘留0.02%,仍可藉由快篩檢測有效判別混燒飛灰中可反應性鋁金屬成分存在。此外,為量化混燒飛灰中可反應性鋁金屬含量,建立混燒飛灰鋁金屬含量檢測,並選定1.0M氫氧化鈉作為檢測試劑,即使混燒飛灰鋁金屬僅殘留0.02%,仍可有效檢出。
最後,將具膨脹性混燒飛灰以濕式處理製作鹼激發砂漿試體,可發現試體已無高度膨脹現象發生,確認濕式處理可有效消弭研究之兩種混燒飛灰中可反應性鋁金屬。
Solid Recovered Fuel (SRF) is produced from combustible waste, which includes domestic waste such as plastics, paper, and wood. Notably, some of this waste is reprocessed into SRF and contains aluminum foil material. When co-fired with coal in a Circulating Fluidized Bed (CFB) boiler, the resulting fly ash retains aluminum metal substances. Consequently, its reuse in cement-based materials leads to volume expansion phenomena.
This study carried out material property analysis on co-fired fly ash derived from domestic Circulating Fluidized Bed (CFB) boilers, investigating the expansion factor of co-fired fly ash applied to cement-based materials. The research findings reveal that the residual aluminum content in the co-fired fly ash leads to significant expansion of the specimens due to hydrogen production in an alkaline environment. In order to provide a quick identification method for boiler operators or recycling businesses to confirm the hydrogen expansion characteristics of co-fired fly ash, a rapid aluminum content screening test for co-fired fly ash has been established. This test allows effective identification of residual aluminum content in the co-fired fly ash within a 5-minute test period, even if the aluminum content is as low as 0.02%. In addition, to quantify the reactive aluminum content in co-fired fly ash, an aluminum content detection method for co-fired fly ash has been established, choosing 1.0M sodium hydroxide as the detection reagent. This method can effectively detect the presence of aluminum, even if the co-fired fly ash only contains a residual aluminum content of 0.02%.
Finally, expansive co-fired fly ash was subjected to wet treatment to produce alkali-activated mortar specimens. It was observed that the specimens no longer exhibited significant expansion, confirming that the wet treatment effectively eliminates the reactive aluminum present in the two types of co-fired fly ash studied.
行政院環保署,「固體再生燃料製造技術指引與品質規範」,(2020)。
行政院環保署,「固體再生燃料(SRF)相關管理方式」,(2021)。
行政院環保署,「焚化底渣再生粒料應用於控制性低強度回填材料」,(2015)。
吳明富,「還原渣-高爐石作為混合膠結材支應用」,碩士論文,國立中央大學,中壢(2013)。
吳明富,「含鋁金屬混飛灰膨脹特性研究暨遇處理穩定化方法評估」,博士論文,國立中央大學,中壢(2023)。
Aubert, J.E., Husson, B., and Vaquier, A., (2004), “Metallic aluminum in MSWI fly ash: quantification and influence on the properties of cement-based products.” Waste Manage, Vol. 24, pp. 589-596.
Alnahhal, M. F., Kim, T., Zhongzi, X., and Hajimohammadi, A., (2021), “Distinctive rheological and temporal viscoelastic behaviour of alkali-activated fly ash/slag pastes: A comparative study with cement paste.” Cement and Concrete Research, Vol. 144, 106441.
Bakharev, T., Kim, T., Sanjayan, J. G., and Cheng,T. B., (1999), “Alkali activation of Australian slag cements.” Cement and Concrete Research, Vol. 29, pp.113-120.
Bunge, R., (2016), “Recovery of metals from waste incinerator bottom ash.” Germany.
Collepardi, M., Collepardi, S., Ongaro, D., Curzio, A. Q., and Sammartino, M., (2010), “Concrete with bottom ash from municipal solid wastes incinerators.” International Conference on Sustainable Construction Materials and Technologies, pp. 289-298.
Coker, E. N., (2013), “The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.” Office of Scientific & Technical Information Technical Reports.
Dontriros, S., Likitlersuang, S.,and Janjaroen, D., (2020), “Mechanisms of chloride and sulfate removal from municipal-solid waste-incineration fly ash (MSWI FA): Effect of acid-base solutions.” Waste Management, Vol. 101, pp.44-53.
Gai, W. Z., Liu, W. H., Deng,Z. Y., and Zhou, J. G., (2013), “Reaction of Al powder with water for hydrogen generation under ambient condition.” International journal of hydrogen energy, Vol. 37, pp.13132-13140.
Gökelma, M., Olivares, A. V., and Tranell, G., (2021), “Characteristic properties and recyclability of the aluminium fraction of MSWI bottom ash.” Waste Management, Vol. 130, pp.65-73.
Huanhai, Z., Xuequan, W., Zhongzi, X., and Mingshu, T., (1993), “Kinetic study on hydration of alkali-activated slag.” Cement and Concrete Research, Vol. 23, pp.1253-1258.
Hashim, A. N., Hussin,K., Begumm, N., Abdullah, M. M. A. B., Razak, K. A., and Ekaputri, J. J., (2015), “Effect of sodium hydroxide (NaOH) concentration on compressive strength of alkali-activated slag (AAS) mortars.” Applied Mechanics and Materials, Vol.754-755, pp.300-304.
Huang, G., Yang K., Chen, L., Lu, Z., Sun, Y., Zhang, X., Feng, Y., Ji, Y., and Xu, Z., (2020), “Use of pretreatment to prevent expansion and foaming in high performance MSWI bottom ash alkali-activated mortars.” Construction and Building Materials, Vol. 245, 118471.
Jeurgens, L. P. H., Sloof, W. G., Tichelaar, F. D., and Mittemeijer, E. J., (2002), “Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium.” Thin Solid Films, Vol. 418, pp.86-101.
Joseph, A.M., Van den Heede, P., Snellings, R., and Van, A., (2017), “Comparison of different beneficiation techniques to improve utilization potential of municipal solid waste incineration fly ash concrete.” Construction Materials and Systems,Vol. 2, 49.
Kanehira, S., Kanamor, S., Nagashima, K., Saeki, T., Visbal, H., Fukui ,T., and Hirao, K., (2013), “Controllable hydrogen release via aluminum powder corrosion in calcium hydroxide solutions.” Journal of Asian Ceramic Societies, Vol. 1, pp.296-303.
Kuo, W. T., and Gao, Z. C., (2018), “Engineering Properties of Controlled Low-Strength Materials Containing Bottom Ash of Municipal Solid Waste Incinerator and Water Filter Silt.” Applied Sciences, Vol. 8, 1377.
Kou, L., Tang, J., Hu, T., Zhou, B., and Yang, L., (2021). “Effect of CaO on catalytic combustion of semi-coke.” Green Processing and Synthesis, Vol. 10, pp.11-20.
Lynn, C.J., Dhir, R.K., and Ghataora, G.S., (2017). “Municipal incinerated bottom ash use as a cement component in concrete.” Journal of Cleaner Production, Vol. 286, 125707.
Mong, N. T., Anh, N. H., Ty, T. V., Khai, L. T. Q., Xuan, N. V., and Giang, N. N. L., (2020), “Engineering properties of practical alkali-activated material with slag and low calcium fly ash blending.” Xaydung, pp. 157-160
Naraparaju, R., Mechnich, P., Schulz, U., and Rodriguez, G. C. M., (2014), “The Accelerating Effect of CaSO4 within CMAS (CaO-MgO-Al2O3-SiO2) and its Effect on the Infiltration Behavior in EB-PVD 7YSZ.” Journal of the American Ceramic Society, Vol. 73, pp.1-6.
Nithiya, A.,Saffarzadeh, A., and Shimaoka, T., (2017), “Hydrogen gas generation from metal aluminum-water interaction in municipal solid waste incineration (MSWI) bottom ash.” Waste Management, Vol. 73, pp.342-350.
Nedunuri, A. S. S. S., and Muhammad, S., (2021), “Fundamental understanding of the setting behaviour of the alkali activated binders based on ground granulated blast furnace slag and fly ash.” Construction and Building Materials, Vol. 291, 123243.
Pera, J., Coutaz, L., Ambroise, J., and Chababbet, M., (1997), “Use of incinerator bottom ash in concrete.” Cement and Concrete Research , Vol. 27, No 1, pp. 1-5
Porciúncula, C. B., Marcilio, N. R., Tessaro, I. C., and Gerchmann, M., (2012), “Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH.” Brazilian Journal of Chemical Engineering, Vol. 29, pp.337-348.
Rübner, K., Haamkens, F., and Linde, O., (2008), “Use of municipal solid waste incinerator bottom ash as aggregate in concrete.” Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 41, pp.459-464.
Saikia, N., Cornelis, G., Mertens, G., b, Elsen, J., Balen, K. V., Gerven, T. V., and Vandecasteele, C., (2008), “Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.” Journal of Hazardous Materials, Vol. 154, pp.766-777.
Saikia, N., Mertens, G., Balen, K. V., Elsen, J., Gerven, T. V., and Vandecasteele, C., (2015), “Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar.” Construction and Building Materials, Vol. 96, pp.76-85.
Trunov, M.A., Schoenitz, M. and Dreizin, E.L., (2006), “Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. ” Combustion Theory and Modelling, Vol. 10, pp.603-623
Tian, X., Rao, F., Leon-Patino, C. A., and Song, S., (2020), “Effects of aluminum on the expansion and microstructure of alkali-activated MSWI fly ash-based pastes.” Chemosphere, Vol. 240, 124986.
Wang, X., Wang, L., Wang, Y., Tan, R., Ke, X., Zhou, X., Geng, J., Hou, H., and Zhou, M., (2017), “Calcium Sulfate Hemihydrate Whiskers Obtained from Flue Gas Desulfurization Gypsum and Used for the Adsorption Removal of Lead.” Crystals,Vol. 7, 270.
Xuan, D., and Poon, C.S., (2018), “Removal of metallic Al and Al/Zn alloys in MSWI bottom ash by alkaline treatment.” Journal of Hazardous Materials, Vol. 344, pp.73-80.
Yamaguchi, N., Masuda, Y., Yamada, Y., Narusawa, H., Han-Cheol, C., Tamaki, Y., and Miyazaki, T., (2015), “Synthesis of CaO–SiO2 compounds using materials extracted from industrial wastes.” Open Journal of Inorganic Non-Metallic Materials, Vol. 5, pp.1-10.
Zhen, G., Zhou, H., Zhao, T., and Zhao, Y., (2012), “Performance Appraisal of Controlled Low-strength Material Using Sewage Sludge and Refuse Incineration Bottom Ash.” Chinese Journal of Chemical Engineering, Vol. 20, pp.80-88.
Zhen, G., Lu, X., Zhao, Y., Niu, J., Chai, X., Su, L., Li, Y. Y., Liu, Y., Du, J., Hojo, T., and Hu, Y., (2013), “Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives.” Journal of Environmental Management, Vol. 129, pp.183-189.