跳到主要內容

簡易檢索 / 詳目顯示

研究生: 梁嘉權
Chia-Chuan Liang
論文名稱: WiMAX 網路動態資源配置與換手策略之研究
The Study of Dynamic Resource Allocation and Handover Strategies in WiMAX Networks
指導教授: 吳中實
Jung-Shyr Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 100
語文別: 英文
論文頁數: 81
中文關鍵詞: IEEE 802.21IEEE 802.16e頻寬配置法則WiMAX媒體獨立換手跨層設計移動性管理IEEE 802.16
外文關鍵詞: mobility management, cross-layer design, MIH, WiMAX, Bandwidth allocation algorithms, IEEE 802.21, IEEE 802.16e, IEEE 802.16
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線寬頻接取網路中,指明 IEEE 802.16 標準為最主要的技術,已逐步成為最佳解決的方式。雖然這標準已經定義四種不同的服務型態,但仍然遺留支援服務品質的資源配置與限制流量進入網路的允入控制來作為開放性的議題。然而直到現在,這個不時被提及與探究的議題顯示還是有許多增進的餘地。因此,本研究的目的是在 IEEE 802.16 劃時雙工無線寬頻接取網路之下,根據對稱與/或非對稱上下行之流量輸入,來探究動態配置的法則,特別是藉由模擬與其他機制做比較;且於有限與無限緩衝區的情況下,針對 throughput 、公平性、與封包丟棄率這三項來做為評估的依據。主要結果顯示,與其他機制相較之下,所提出的法則不僅能提供較好的公平性且能保有令人滿意的服務品質與較高 throughput,而且在有限深度緩衝區的情況,能減緩緩衝區的耗盡;亦即,利用所提出的法則能減少硬體的成本。此外,本文也一併考量在 IEEE 802.16e 網路使用優化 MIH 服務多重跨層換手的機制。換手情境的完整分析顯示,與其他機制相較之下,所提出的機制,不僅能降低分裂時間,而且沒有封包遺失。這兩種已提出的解決方法也許可分別幫助 IEEE 802.16 標準補足所遺漏的部分與在 IEEE 802.16e 網路中達成無縫隙換手。


    The leading technologies specified in IEEE 802.16 standards have been evolved the most promising solutions in broadband wireless access networks. Having defined four types of service, the IEEE 802.16 standard still left the implementation of resource allocation supporting the four various qualities of service classes and admission control confining the number of flows entering the network as an open issue. Up to this point, however, this issue which has been touched and explored from time to time demonstrates that there is still room for much promotion. Thus, this study aims to explore dynamic bandwidth allocation algorithms in IEEE 802.16 time division duplex broadband wireless access networks under symmetric and/or asymmetric uplink and downlink traffic input, particularly in terms of accumulated throughput, fairness, and packet drop ratio in both infinite and finite buffer cases compared with others by simulations. The major results reveal that the proposed algorithm not only can provide much better fairness and maintain satisfactory quality of service support and high cumulative bandwidth but also in the case of the finite buffer depth is less buffer-consuming than the others, meaning that the hardware cost can be reduced by employing the proposed algorithm. In addition, a multiple cross-layer handover scheme using optimized MIH services in IEEE 802.16e networks is also involved. The thorough analyses of handover scenario show that the proposed scheme not only can reduce handover disruption time but also has no packet loss than the others. The two proposed solutions may help to compensate IEEE 802.16 standards for missing parts and to achieve seamless handovers in IEEE 802.16e networks, respectively.

    Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 7 1.5 Dissertation contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 Dissertation Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Overview on Scheduling Algorithms and Handover Schemes in WiMAX Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 The DFPQ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Mobile IPv6 Fast Handovers over IEEE 802.16e Networks . . . . . . . . . . . 17 2.3.1 Predictive Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 Reactive Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 A Bandwidth Allocation Algorithm for Uplink and Downlink in IEEE 802.16 TDD BWA Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 The QoS Framework of IEEE 802.16 TDD BWA Networks . . . . . . . . . . 23 3.3 Proposed Bandwidth Allocation Algorithm . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.1 A Two-Tier Bandwidth Allocation Hierarchy . . . . . . . . . . . . . . . . . . . 26 3.3.2 The Later Deadline First Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.3 The Example Test-Case of the LDF Algorithm . . . . . . . . . . . . . . . . . . . 35 3.4 Performance Analysis { Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.1 In nite Bu er Depth Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4.2 Finite Bu er Depth Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 A Cross-Layer Handover Scheme Using Optimized MIH services in IEEE 802.16e BWA Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Relevant Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Proposed Architecture and Explicit Fast Handover Procedures . . . . . . . . 61 4.4 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Conclusions and Potential for Future Research . . . . . . . . . . . . . . . . . . . . . . 70 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2 Potential Research for the Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    [1] L. Nuaymi, WiMAX: Technology for Broadband Wireless Access. John Wiley
    & Sons, January 2007.
    [2] IEEE standard for local and metropolitan area networks{part 16: Air interface
    for xed and mobile broadband wireless access systems." IEEE Standard
    802.16-2004, October 2004.
    [3] IEEE standard for local and metropolitan area networks{part 16: Air interface
    for xed and mobile broadband wireless access systems." IEEE Standard
    802.16e-2005, February 2006.
    [4] C. Eklund, R. B. Marks, K. L. Stanwood, and S.Wang, IEEE standard 802.16:
    A technical overview of the wireless MAN air interface for broadband wireless
    access," IEEE Communications Magazine, vol. 40, no. 6, pp. 98{107, 2002.
    [5] A. Ghosh, D. R. Wolter, J. G. Andrews, and R. Chen, Broadband wireless
    access with WiMAX/802.16: Current performance benchmarks and future potential,"
    IEEE Communications Magazine, vol. 43, no. 2, pp. 129{136, 2005.
    [6] J. Chen, W. Jiao, and H. Wang, A service
    ow management strategy for
    IEEE 802.16 broadband wireless access systems in TDD mode," in Proceedings
    of IEEE International Conference on Communications (ICC), vol. 5, pp. 3422{
    3426, May 2005.
    [7] K.Wongthavarawat and A. Ganz, Quantum mechanicals e ects on noise properties
    of nanoelectronic devices: Applications to monte carlo simulation," In-
    ternational Journal of Communications Systems, vol. 16, pp. 81{96, 2003.
    [8] K. Wongthavarawat and A. Ganz, IEEE based last mile broadband wireless
    military networks with quality of service support," in Proceedings of IEEE
    Military Communications Conference (MILCOM), vol. 2, pp. 779{784, October
    2003.
    [9] C. Cicconetti, L. Lenzini, E. Mingozzi, and C. Eklund, Quality of service
    support in IEEE 802.16 networks," IEEE network, vol. 20, no. 2, pp. 50{55,
    2006.
    [10] C. Cicconetti, A. Erta, L. Lenzini, and E. Mingozzi, Performance evaluation
    of the IEEE 802.16 MAC for QoS support," IEEE Transactions on Mobile
    Computing, vol. 6, no. 1, pp. 26{38, 2007.
    [11] A. Sayenko, J. K. O. Alanen, and T. Hamalainen, Ensuring the qos requirements
    in 802.16 scheduling," in Proceedings of the 9th ACM international sym-
    posium on Modeling analysis and simulation of wireless and mobile systems,
    pp. 108{117, 2006.
    [12] W. J. Kim, J. Y. Break, S. D. Lee, Y. J. Suh, Y. S. Kim, and J. A. Kim,
    E cient uplink scheduler architecture of subscriber station in IEEE 802.16
    system," Springer Lecture Notes in Computer Science, vol. 3823, pp. 734{743,
    2005.
    [13] S. Mohanty and I. F. Akyildiz, A cross-layer (layer 2+3) hando management
    protocol for next-generation wireless systems," IEEE Transactions on Mobile
    Computing, vol. 5, pp. 1347{1360, October 2006.
    [14] S. Shakkottai and R. Srikant, Scheduling real-time tra c with deadlines over
    a wireless channel," ACM/Baltzer Wireless Networks, vol. 8, pp. 13{26, 2002.
    [15] L. Tassiulas and S. Sarkar, Maxmin fair scheduling in wireless networks," in
    Proceedings of IEEE INFOCOM, vol. 2, pp. 763{772, 2002.
    [16] S. Lu, V. Bharghavan, and R. Srikant, Fair scheduling in wireless packet networks,"
    IEEE/ACM Transactions Networking, vol. 7, pp. 473{489, 1999.
    [17] E. Jung and N. H. Vaidya, An energy e cient mac protocol for wireless LANs,"
    in Proceedings of IEEE INFOCOM, vol. 3, pp. 1756{1764, 2002.
    [18] P. Bhagwat, P. Bhattacharya, A. Krishna, and S. K. Tripathi, Enhancing
    throughput over wireless LANs using channel state dependent packet scheduling,"
    in Proceedings of IEEE INFOCOM, vol. 3, pp. 1133{1140, 1996.
    [19] N. H. Vaidya, P. Bahl, and S. Gupta, Distributed fair scheduling in a wireless
    LAN," IEEE Transactions on Mobile Computing, vol. 4, pp. 616{629, 2005.
    [20] C. Fragouli, V. Sivaraman, and M. Srivastava, Controlled multimedia wireless
    link sharing via enhanced class-based queuing with channel-state-dependent
    packet scheduling," in Proceedings of IEEE INFOCOM, vol. 2, pp. 572{580,
    1998.
    [21] T. S. E. Ng, I. Stoica, and H. Zhang, Packet fair queuing algorithms for wireless
    networks with location-dependent errors," in Proceedings of IEEE INFOCOM,
    vol. 3, pp. 1103{1111, 1998.
    [22] J. Gomez, A. Campbell, and H. Morikawa, The Havana framework for supporting
    application and channel dependent QoS in wireless networks," in Proceed-
    ings of International Conference on Network Protocols (ICNP), pp. 235{244,
    1999.
    [23] Y. Cao and V. O. K. Li, Scheduling algorithms in broadband wireless networks,"
    Proceedings of the IEEE, vol. 89, no. 1, pp. 76{87, 2001.
    [24] M. Settembre, M. Puleri, S. Garritano, P. Testa, R. Albanese, M. Mancini, and
    V. L. Curto, Performance analysis of an e cient packet-based IEEE 802.16
    MAC supporting adaptive modulation and coding," in Proceedings of Interna-
    tional Symposium on Computer Networks, pp. 11{16, 2006.
    [25] M. Ma, J. Lu, S. Bose, and B. C. Ng, A three-tier framework and scheduling
    to support QoS service in WiMAX," in Proceedings of 6th International
    Conference on Information, Communications and Signal Processing, pp. 1{5,
    December 2007.
    [26] M. Ma, J. Lu, and C. Fu, Hierarchical scheduling framework for QoS service
    in WiMAX point-to-multi-point networks," Institution of Engineering and
    Technology Communications, vol. 4, pp. 1073{1082, June 2010.
    [27] G. Chu, D. Wang, and S. Mei, A QoS architecture for the MAC protocol
    of IEEE 802.16 BWA system," in Proceedings of International Conference on
    Communications, Circuits and Systems and West Sino Expositions, pp. 435{
    439, July 2002.
    [28] Q. Liu, X.Wang, and G. B. Giannakis, A cross-layer scheduling algorithm with
    QoS support in wireless networks," IEEE Transactions Vehicular Technology,
    vol. 55, no. 3, pp. 839{847, 2006.
    [29] S. A. Xergias, N. Passas, and L. Merakos, Flexible resource allocation in IEEE
    802.16 wireless metropolitan area networks," in Proceedings of IEEE Workshop
    on Local and Metropolitan Area Networks (LANMAN), pp. 1{6, September
    2005.
    [30] D. H. Cho, J. H. Song, M. S. Kim, and K. J. Han, Performance analysis of the
    IEEE 802.16 wireless metropolitan area network," in Proceedings of the First
    International Conference on Distributed Frameworks for Multimedia Applica-
    tions (DFMA), pp. 130{136, February 2005.
    [31] D. Niyato and E. Hossain, Queue-aware uplink bandwidth allocation and rate
    control for polling service in IEEE 802.16 broadband wireless networks," IEEE
    Transactions on Mobile Computing, vol. 5, no. 6, pp. 668{679, 2006.
    [32] D. Niyato and E. Hossain, A queuing-theoretic and optimization-based model
    for radio resource management in IEEE 802.16 broadband wireless networks,"
    IEEE Transactions on Computers, vol. 55, no. 11, pp. 1473{1488, 2006.
    [33] V. Singh and V. Sharma, E cient and fair scheduling of uplink and downlink
    in IEEE 802.16 OFDMA networks," in Proceedings of IEEE Communications
    and Networking Conference (WCNC), vol. 2, pp. 984{990, April 2006.
    [34] K. A. Noordin and G. Markarian, Cross-layer optimization architecture for
    WiMAX systems," in Proceedings of IEEE International Symposium on Per-
    sonal, Indoor and Mobile Radio Communications (PIMRC), pp. 1{4, September
    2007.
    [35] D. Triantafyllopoulou, N. Passas, A. K. Salkintzis, and A. Kaloxylos, A heuristic
    cross-layer mechanism for real-time tra c over IEEE 802.16 networks," In-
    ternational Journal of Network Management, vol. 17, pp. 347{361, August 2007.
    [36] D. Triantafyllopoulou, N. Passas, A. K. Salkintzis, and A. Kaloxylos, A heuristic
    cross-layer mechanism for real-time tra c in IEEE 802.16 networks," in
    Proceedings of IEEE International Symposium on Personal, Indoor and Mobile
    Radio Communications (PIMRC), pp. 1{5, September 2007.
    [37] S. Floyd and V. Jacobson, Random early detection gateways for congestion
    avoidance," IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397{413,
    1993.
    [38] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,
    V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan,
    S. Shenker, J. Wroclawski, and L. Zhang, Recommendations on queue management
    and congestion avoidance in the internet." Internet Engineering Task
    Force RFC 2309, April 1998.
    [39] H. J. Chao and X. Guo, Quality of Service Control in High-Speed Networks.
    John Wiley and Sons, 2002.
    [40] J. Jeong, M. Y. Chung, and H. Choo, Low latency and cost e ective hando
    based on PBF scheme in hierarchical mobile IPv6," Springer Lecture Notes in
    Computer Science, vol. 4208, pp. 700{709, 2006.
    [41] F.-Y. Hsieh, Y.-W. Chen, and P.-W. Wu, Cross layer design of hando s in
    IEEE 802.16e network," in Proceedings of International Computer Symposium
    conference, pp. 703{708, January 2006.
    [42] H. V. Nguyen, S. Ro, J. Ryu, and S. Park, Early fast binding update for
    fast handover in mobile IPv6 networks," in Proceedings of the Fourth IASTED
    Asian Conference on Communication Systems and Networks, April 2007.
    [43] C. C. Tseng, L. H. Yeh, H. H. Chang, and K. C. Hsu, Topology-aided crosslayer
    fast hando designs for IEEE 802.11/mobile IP environments," IEEE
    Communications Magazine, vol. 43, pp. 156{163, December 2005.
    [44] L. Dimopoulou, G. Leoleis, and I. S. Venieris, Fast handover support in a
    WLAN environment: Challenges Challenges and perspectives," IEEE Network, vol. 19,
    pp. 14 |20, May/June 2005.
    [45] H. Kim and Y. Kim, An early binding fast handover for high-speed mobile
    nodes on MIPv6 over connectionless packet radio link," in Proceedings of Soft-
    ware Engineering, Arti cial Intelligence, Networking, and Parallel/Distributed
    Computing, pp. 237{242, June 2006.
    [46] A. Nasir and M. Rukh, Internet mobility using SIP and MIP," in Proceedings
    of Information Technology: New Generations (ITNG), pp. 334{339, April 2006.
    [47] Y. T. Lee, T. C. Chen, S. T. Wang, S. Y. Pan, and J. C. Chen, SIP-based
    fast hando over IEEE 802.16e," in Proceedings of Wireless Ad Hoc and Sensor
    Networks (WASN), August 2006.
    [48] E. Cha, K. Lee, and M. Kim, Cross layer fast hando for SIP," in Proceedings
    of Advanced Information Networking and Applications, pp. 443{450, 2007.
    [49] Y. Y. An, K. W. Lee, D. Kum, S. Lee, Y. Cho, B. Yae, and W. Jung, Enhanced
    fast handover mechanism using MIH services in MIPv6," Wired/Wireless In-
    ternet Communications, vol. 3970, pp. 120{131, 2006.
    [50] Y. Y. An, B. H. Yae, K. W. Lee, Y. Z. Cho, and W. Y. Jung, Reduction of
    handover latency using MIH services in MIPv6," in Proceedings of the Advanced
    Information Networking and Applications, pp. 229{234, 2006.
    [51] O. S. Yang, S. G. Choi, J. K. Choi, J. S. Park, and H. J. Kim, A handover
    framework for seamless service support between wired and wireless networks,"
    in Proceedings of International Conference Advanced Communication Technol-
    ogy, vol. 3, pp. 1791{1796, February 2006.
    [52] Y. M. Chen, M. Y. Lai, S. C. Lin, S. C. Chang, and T. Y. Chung, Sctp-based
    hando based on MIH triggers information in campus networks," in Proceed-
    ings of International Conference Advanced Communication Technology, vol. 2,
    pp. 1297{1301, February 2006.
    [53] T. C. Schmidt and M. Wahlisch, Analysis of handover frequencies for predictive,
    reactive and proxy schemes and their implications on IPv6 and multicast
    mobility," Springer Lecture Notes in Computer Science, vol. 3421, pp. 1039{
    1046, 2005.
    [54] T. C. Schmidt and M. Wahlisch, Predictive versus reactive | analysis of
    handover performance and its implications on IPv6 and multicast mobility,"
    Telecommunication Systems, vol. 30, pp. 123{142, November 2005.
    [55] S. Pack and Y. Choi, Performance analysis of fast handover in mobile IPv6
    networks," Springer Lecture Notes in Computer Science, vol. 2775, pp. 679{691,
    September 2003.
    [56] H. Jang, J. Jee, Y. Han, S. Park, and J. Cha, Mobile IPv6 fast handover over
    IEEE 802.16e networks." Internet Engineering Task Force RFC 5270, June
    2008.
    [57] L. Georgiadis, R. Guerin, and A. Parekh, Optimal multiplexing on a single
    link: Delay and bu er requirements," IEEE Transactions on Information The-
    ory, vol. 43, no. 5, pp. 1518{1535, 1997.
    [58] A. Demers, S. Keshav, and S. Shenker, Analysis and simulation of a fair queueing
    algorithm," in Proceedings ACM SIGCOMM, vol. 19, pp. 3{12, August
    1989.
    [59] E. L. Hahne and R. G. Gallager, Round robin scheduling for fair
    ow control
    in data communication networks," in Proceedings of IEEE International
    Conference on Communications (ICC), pp. 103{107, June 1986.
    [60] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, Weighted round-robin cell
    multiplexing in a general-purpose ATM switch chip," IEEE Journal Selected
    Areas in Communications, vol. 9, no. 8, pp. 1265{1279, 1991.
    [61] R. Cruz, A calculus for delay, part I: Network elements in isolation," IEEE
    Transactions Information Theory, vol. 37, no. 1, pp. 114{121, 1991.
    [62] S. Choi, G. Hwang, A. L. T. Kwon, and D. Cho, Fast handover scheme for
    real-time downlink services in IEEE 802.16e BWA system," in Proceedings of
    Vehicular Technology Conference (VTC), vol. 3, pp. 2028{2032, 2005.
    [63] D. Johnson, C. Perkins, and J. Arkko, Mobility support in IPv6." Internet
    Engineering Task Force RFC 3775, June 2004.
    [64] H. Soliman, Mobile IPv6: Mobility in a Wireless Internet. Addison-Wesley,
    April 2004.
    [65] R. Koodli and Ed: Nokia Research Center, Fast handovers for mobile IPv6."
    Internet Engineering Task Force RFC4068, July 2005.
    [66] J. Rosenberg, H. Schulzrinne, and G. Camarillo, SIP: Session initiation protocol."
    Internet Engineering Task Force RFC3261, June 2002.
    [67] E. Wedlund and H. Schulzrinne, Mobility support using SIP," in Proceedings
    of ACM/IEEE International Conference on Wireless and Mobile Multimedia
    (WoWMoM), pp. 76{82, August 1999.
    [68] W. Kim, M. Kim, K. Lee, C. Yu, and B. Lee, Link layer assisted mobility
    support using SIP for real-time multimedia communications," in Proceedings of
    IEEE/ACM MobiWac, pp. 127{129, 2004.
    [69] IEEE standard for local and metropolitan area networks{part 21: Media independent
    handover services." IEEE Standard 802.21-2008, January 2009.
    [70] F. Cacace and L. Vollero, Managing mobility and adaptation in upcoming
    802.21-enabled devices," in Proceedings of Wireless mobile applications and ser-
    vices on WLAN hotspots (WMASH), pp. 1{10, 2006.
    [71] M. Ahmed, Call admission control in wireless networks: a comprehensive survey,"
    IEEE Communications Surveys Tutorials, vol. 7, no. 1, pp. 49{68, 2005.
    [72] H. T. Cheng, H. Jiang, and W. Zhuang, Distributed medium access control
    for wireless mesh networks," Wireless Communications and Mobile Computing,
    vol. 6, no. 6, pp. 845{864, 2006.

    QR CODE
    :::