| 研究生: |
彭均婷 Chun Ting |
|---|---|
| 論文名稱: |
CuO/Ce1-xMnxO2-Al2O3觸媒於富氫中CO的選擇性氧化反應研究 CuO/Ce1-xMnxO2-Al2O3 catalysts for the preferential oxidation of CO in H2-rich gases |
| 指導教授: |
陳吟足
Yin-Zu Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 含浸法 、富氫中CO氧化 |
| 外文關鍵詞: | MnOx, CeO2, TPR |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本研究嘗試於CeO2引入不同比例的Mn,製備Ce1-xMnxO2擔體及CuO/Ce1-xMnxO2觸媒。為了增進觸媒之機械強度與穩定度,另外於Ce1-xMnxO2¬擔體中引入不等量Al2O3與製備CuO/Ce1-xMnxO2-Al2O3觸媒。本研究分別探討CuO/Ce1-xMnxO2觸媒與CuO/Ce1-xMnxO2-Al2O3觸媒之CO選擇性氧化反應特性,並採用BET、TPR、XPS、Raman、CO脈衝吸附與Auger等分析方法探討觸媒之物理特性與表面性質。CO/O/H2/He = 1/1/50/48進料及F/W = 10,000 ml hr-1 g-1下,進行CuO/Ce1-xMnxO2-Al2O3觸媒的活性測試。
CeO2擔體中引入少量的錳(x = 0.1~0.3),錳是以正四價的形式固溶於CeO2擔體晶格中,形成良好固溶的氧化物Ce1-xMnxO2,Ce1-xMnxO2氧化物較易釋出晶格氧,有較佳redox特性。當錳的引入量大於0.3,會有分離相的產生,錳是以三價的形式存在。
7%CuO/Ce1-xMnxO2觸媒,引入少量Mn (x = 0.1),觸媒活性增加,達CO完全轉化的T100下降5°C (90~95°C),此時選擇S100約為100%;Mn引入量0.2<x<0.5時,觸媒活性與未添加Mn量之7%CuO/CeO2觸媒相當,錳引入量x>0.5時,則不利於觸媒活性。反應溫度小於100°C,選擇率均維持100%,反應溫度大於100°C,選擇率始明顯下降。
7%CuO/Ce1-xMnxO2-20%Al2O3觸媒與未引入Al2O3之觸媒相較,其T100大約上升5~10°C。Mn的引入量x = 0.1~0.2,T100為95~100°C與未引入Mn之觸媒相較,下降5°C;x = 0.3,T100為100~105°C,與未引入之Mn之觸媒T100相當。Mn引入量對7%CuO/Ce1-xMnxO2與7%CuO/ Ce1-xMnxO2-20%Al2O3之影響相似。
7%CuO/Ce0.9Mn0.1O2-x%Al2O3觸媒,Al2O3引入量x = 10~30%,觸媒活性差異不大,T100溫度95~100°C,Al2O3引入量大於30%,才稍不利於CO選擇性氧化反應。Al2O3引入量x = 40%時,T100溫度略升 5°C,溫度為100~105°C,選擇率由100%下降至95%。
CO2及H2O對 7%CuO/Ce0.9Mn0.1O2-20%Al2O3觸媒明顯影響,於進料氣中引入15% CO2,T100明顯增至130~135°C,S100下降至71%;於進料中引入10% H2O,會造成觸媒床堵塞,以致無法順利進行。若以無CO2及H2O的進料在100°C下進行7%CuO/Ce0.9Mn0.1O2-20%Al2O3觸媒的穩定性測試,經200小時反應,轉化率由100%僅降至93%。7%CuO/ Ce0.9Mn0.1O2-20%Al2O3觸媒有強吸水性,不適用於燃料電池的CO去除反應,但仍適用於一般的CO氧化反應上。
Abstract
In our previous studies, doping MnOx into CeO2 increase the mobility of lattice oxygen and enhanced the activity of the activity of the 7%CuO/Ce1-xMnxO2 catalyst in the selective oxidation of CO in the H2-rich feed. In order to promote of mechanical strength and the stability of support, moreover to Alumina was incorporated with the solid solution of Ce1-xMnxO2 to form Ce1-xMnxO2-Al2O3 mixed oxides, by the suspension /co-precipitation method, to be used as supports ofCuO/Ce1-xMnxO2-Al2O3 catalyst. They were characterized and effects of Al2O3 on the selective oxidation of CO in excess hydrogen were examined. Characterization of catalysts were performed by XRD, TPR, XPS, Auger. All catalysts were reduced to room temperature in helium and then the feed H2/CO/O2/He(50/1/1/48) mixed was diverted to the reactor at a flow rate of 30ml/ min (F/W = 10,000ml/g h).
For Ce1-xMnxO2 with x = 0.1~0.3, incorporating an appropriate amount of Mn4+ into the CeO2 lattice to form a solid solution facilitated the release of the bulk lattice oxygen. Some MnOx might aggregate and be split out from the solid solution of Ce1-xMnxO2 as the fraction of Mn incorporated excess 0.3, and then Mn3+ into the CeO2.
7%CuO/Ce0.9Mn0.1O2 catalyst was the most active one, it was more active than the 7%CuO/CeO2 catalyst, with a T100 temperature (90-95°C) for complete conversion that was above 5°C less than that of 7%CuO/CeO2 (95-100°C) and the selective oxidation of CO was still 100%. The promotion of CO oxidation became weaker as the fraction of Mn incorporated increase above 0.5.
For doping appropriate small friction as the amount of Mn about o.1 into the Ce1-xMnxO2 for 7%CuO/Ce0.9Mn0.1O2-x%Al2O3 catalysts. This interfacial perimeter also decreased as the amount of Al2O3 incorporated into Ce0.9Mn0.1O2-x%Al2O3 increased above 30%, so that CO oxidation became weaker.
Because a gas stream from reformer always contains CO2 and H2O, so that a catalyst of selective oxidation of CO must be resistant to both CO2 and H2O. The 7%CuO/Ce1-xMnxO2-20%Al2O3 catalyst rose by about 35°C from 95-100°C to 130-135°C when an H2-rich feed in presence of 15%CO2. The 7%CuO/Ce1-xMnxO2-20%Al2O3 created the catalyst bed to stop up and reaction can not finish, so that the catalyst had the hygroscopicity. A long (200 h) run over the 7%CuO/Ce0.9Mn0.1O2-20%Al2O3 catalyst was conducted at 100°C, with about 93% conversion; the performance was stable when the feed no CO2 and H2O.
參考文獻
[1] 鄭耀宗,科學發展,367期,2003年7月。
[2] 陳翰全,「CuO/Ce1-xZrxO2觸媒富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國93年。
[3] 黃振瑋,「CuO/Ce1-xSnxO2觸媒富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國94年。
[4] X. Tang, Y. Xu, W. Shen, “Promoting effect of copper on the catalytic activity of MnOx-CeO2 mixed oxide for complete oxidation of benzene,” Chem. Eng. J xxx (2008) xxx.
[5] X. Tang, Y. Li, X. Huang, “MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde :Effect of preparation method and calcinations temperature,” Appl. Catal. B:62 (2006) 265-273.
[6] M. Haruta, N. Yamada, T. Kobayashi, S.J. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” J. Catal. 115 (1989) 301-309.
[7] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4,” J. Catal. 144 (1993) 175-192.
[8] M. Haruta, “Size- and support-dependency in the catalysis of gold,” Catal. Today 36 (1997) 153-166.
[9] M. Harut, M. Date, “Advances in the catalysis of Au nanoparticles,” Appl. Catal. A: Gen. 222 (2001) 427-437.
[10] F. Boccuzzi, A. Cgiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, M. Haruta, “Au/TiO2 Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation,” J. Catal. 202 (2001) 256-267.
[11] M. Haruta,S. Tsubota, T. Kobayashi, H. Kageyama,M.J. Genet, B. Delmon, “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4,” J. Catal. 144 (1993) 175-192.
[12] A. Luengnaruemitchai, S. Osuwan, E. Gulari, “Selective catalytic oxidation of CO in the presence of H2 over gold catalystInt,” J. Hydrogen Energ. 29 (2004)429-435.
[13] G. K. Bethke, H. H. Kung, “Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al2O3 catalysts,” Appl. Catal. A: Gen. 194 (2000) 43-53.
[14] N.A. Hodge, C.J. Kiely, R. Whyman, M.R.H. Siddiqui, G.J. Hutchings, Q. A. Pankhurst, F. E. Wangner, R. R. Rajaram, S. E. Golunski, “Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation,” Catal. Today 72 (2002) 133-144.
[15] M. Brown, A. Green, US Patent 3,088,919,1963.
[16] M.J. Kahlich, H.A. Gasteiger, R.J. Behm, “Kinetics of the Selective CO Oxidation in H2-Rich Gas on Pt/Al2O3,” J. Catal. 171 (1997) 93-105.
[17] H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki, M. Watanabe, “Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite,” Appl. Catal. A: Gen. 159 (1997) 159-169.
[18] A. Manasilp, E. Gulari, “Selective CO oxidation over Pt/alumina catalysts for fuel cell applications,” Appl. Catal. B: Environ. 37 (2002) 17-25.
[19] X. Liu, O. Korotkikh, R. Farrauto, “Selective catalytic oxidation of CO in H2: structural study of Fe oxide-promoted Pt/alumina catalystAppl.,” Catal. A: Gen. 226 (2002) 293-303.
[20] A. Sirijaruphan, J.G. Goodwin, “Effect of Fe promotion on the surface reaction parameters of Pt/γ -Al2O3 for the selective oxidation of CO,” J. Catal, 224 (2004) 304-313.
[21] I. Hyuk Son, “Study of Ce-Pt/γ-Al2O3 for the selective oxidation of CO in H2 for application to PEFCs: Effect of gases,” J. P. S. 159 (2006) 1266-1273.
[22] T. Ince, G. Uysal, A. Nilgun Akın, R. Yıldırım, “Selective low-temperature CO oxidation over Pt-Co-Ce/Al2O3 in hydrogen-rich streams,” Appl. Catal. A: Gen. 292 (2005) 171-176.
[23] J.L. Ayastuy, M.P. Gonzalez-Marcos, J.R. Gonzalez-Velasco, M. A. Gutierrez-Ortiz, “MnOx/Pt/Al2O3 catalysts for CO oxidation in H2-rich streams,” Appl. Catal. B: Environ. 70(2007) 532-541.
[24] J.L. Ayastuy, A. Gil-Rodriguez, M.P. Gonzalez-Marcos, M.A. Gutierrez-Ortiz, “Effect of process variables on Pt/CeO2 catalyst behaviour for the PROX reaction,” I. J. H. Eng 31 (2006) 2231-2242.
[25] J.L. Ayastuy, M.P. Gonzalez-Marcos, A. Gil-Rodrıguez, J.R. Gonzalez-Velasco, M.A.Gutierrez-Ortiz,“Selective CO oxidation over CexZr1-xO2-supported Pt catalysts,” Catal. Today 116 (2006) 391-399.
[26] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4,“ J. Catal., 144 (1993) 175-192.
[27] G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, “A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen,” J. Batistac, Catal. Today 75 (2002) 157-167.
[28] H. Tanaka, S.I. Ito, S. Kameoka, “Promoting effect of potassium in selective oxidation of CO in hydrogen-rich stream on Rh catalysts,” K. Tomishige, K. Kunimori, Catal. Commum. 4 (2003) 1-4.
[29] H. Tanaka, S. I. Ito, S. Kameoka, K. Tomishige, K. Kunimori, “Catalytic performance of K-promoted Rh/USY catalysts in preferential oxidation of CO in rich hydrogen,” Appl. Catal. A: Gen. 250 (2003) 255-263.
[30] S.I. , H. Tanaka, S. Kameoka, Y. Minemura, K. Tomishige, “Selective CO oxidation in H2-rich gas over K2CO3-promoted Rh/SiO2 catalysts: effects of preparation methodK. Kunimori,” Appl. Catal. A: Gen. 273 (2004) 295-302.
[31] Y. Ono, M. Shibata, T. Inui, “Non-linear change in oxidation state of Cu during Co oxidation on supported copper catalysts measured by the forced-oscillating reaction method,” J. Mol. Catal. A-Chem 153 (2000) 53-62.
[32] Y. Liu, Q. Fu, M. F. Stephanopoulos, “Preferential oxidation of CO in H2 over CuO-CeO2 catalysts ,” Catal. Today 93 (2004) 241-246.
[33] W. Liu, M. F. Stephanopoulos, “Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts : I. Catalyst Composition and Activity,” J. Catal. 153 (1995) 304-316.
[34] W. Liu, M. F. Stephanopoulos, “Total Oxidation of Carbon-Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts : II. Catalyst Characterization and Reaction-Ki,” J. Catal. 153 (1995) 317-332.
[35] W.P. Dow, T.J. Huang, “Effects of Oxygen Vacancy of Yttria-Stabilized Zirconia Support on Carbon Monoxide Oxidation over Copper Catalyst,” J. Catal. 147 (1994) 322-332.
[36] 林聖欽,「以觸媒在富氫下行一氧化碳選擇性氧化」,清大碩士論文(2000).
[37] C.Y. Shiau, M.W. Ma, C.S. Chuang, “CO oxidation over CeO2-promoted Cu/γ-Al2O3 catalyst: Effect of preparation method,” Appl. Catal. A: Gen. 301 (2006) 89-95.
[38] E. Aneggi, J. Liorca, M. Boaro, A. Trovarelli, “Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders,” J. Catal. 234 (2005) 88-95.
[39] K. Zhou, X. Wang, X. Sun, Q. Peng, “Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planesY. Li,” Appl. Catal. A:Gen 229 (2005) 206-212.
[40] H.C. Yao, Y.F. Yu Yao, “Ceria in automotive exhaust catalysts : I. Oxygen storage,” J. Catal. 86 (1984) 254-265.
[41] S.J. Scgmieg, D.N. Belton, “Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive cataly,” Appl. Catal. B: Environ. 6 (1995) 127-144.
[42] K.C. Taylor, Catal. Rev.-Sci. Eng. 35 (1993) 457.
[43] M.F. Luo, Y.J. Zhong, X.X. Yuan, X.M. Zheng, Appl. Catal, 162(1997)121.
[44] B. Skaman, D. Grandjean, R. E. Benfield, A. Hinz, A. Andersson , L.R. Wallenberg, “Carbon Monoxide Oxidation on Nanostructured CuOx/CeO2 Composite Particles Characterized by HREM, XPS, XAS, and High-Energy Diffraction,” J. Catal. 211 (2002) 119-133.
[45] A. Martinez-Arias, M. Fernandez-Garcia, O. Gaivez, J.M. Coronado, “Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts J.A. Anderson,” J. Catal,195 (2000) 207-216.
[46] M. Ozawa, C.K. Loong, “In situ X-ray and neutron powder diffraction studies of redox behavior in CeO2-containing oxide catalysts,” Catal. Today 50 (1999) 329-342.
[47] M. Daturi, E. Finocchio, C. Binet, J.C. Lavalley, F. Fally, V. Perrichon, J. Phys. Chem. B 103 (1999) 329
[48] R. Di Monte, G.R. Rao, J. Kašpar, S. Meriani, A. Trovarelli, M. Graziani, “Rh-Loaded CeO2-ZrO2 Solid-Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural-Properties,” J. Catal. 151 (1995) 168-177.
[49] P. Fornasiero, E. Fonda, R.D. Monte, G. Vlaic, J. Ka par, M. Graziani, “Relationships between Structural/Textural Properties and Redox Behavior in Ce0.6Zr0.4O2 Mixed Oxides,” J. Catal. 187 (1999) 177-185.
[50] A. M. Arias, M.F.Garcia, J. Soria, J.C. Conesa, “Spectroscopic Study of a Cu/CeO2 Catalyst Subjected to Redox Treatments in Carbon Monoxide and Oxygen,” J. Catal. 182 (1999) 367-377.
[51] G. Vlaic, R. Di Monte, P. Fornasiero, J. Kašpar, M. Graziani, “Redox Property-Local Structure Relationships in the Rh-Loaded CeO2-ZrO2 Mixed Oxides,” J. Catal. 182 (1999) 378-389
[52] C. Descorme, Y. Madier, D. Duprez, “Infrared Study of Oxygen Adsorption and Activation on Cerium–Zirconium Mixed Oxides,” J. Catal. 196 (2000) 167-173.
[53] G. Balducci, P. Fornasiero, “An unusual promotion of the redox behaviour of CeO2-ZrO2 solid solutions upon sintering at high temperatures R. Di Monte, J. Kaspar, S. Meriani,” Catal. Lett. 33 (1995) 193.
[54] R. Lin, Y. J. Zhong, M.F. Luo, W. P. Liu, Indian J. Chem. 40A (2001) 36.
[55] R. Lin, M.F. Luo, Y.J. Yan, G.Y. Liu, W.P. Liu, “Comparative study of CuO/Ce0.7Sn 0.3O2, CuO/CeO2 and CuO/SnO2 catalysts for low-temperature CO oxidation,” Appl. Catal. A: Gen. 255 (2003) 331-336.
[56] H. Chen, A. Sayari, A. Adnot, F. Larachi, “Composition-activity effects of Mn–Ce–O composites on phenol catalytic wet oxidation,” Appl. Catal. B: Environ. 32 (2001) 195-204.
[57] G. Qi, R. T. Yang, “Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst,” J. Catal. 217 (2003) 434-441.
[58] B. Murugan, A.V., “Ramaswamy, Nature of Manganese Species in Ce1-xMnxO2- Solid Solutions Synthesized by the Solution Combustion Route,” Chem. Mater 17(2005)3983-3993
[59] 王榕蔓,「CuO/Ce1-xSnxO2-Al2O3觸媒富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國96年。