跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳憬憲
Jing-sian Chen
論文名稱: 穩態紅外線LED封裝熱阻量測
Measurement of thermal resistance of LED package with infrared at Steady state
指導教授: 孫慶成
Ching-Cherng Sun
鍾德元
Te-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 98
語文別: 中文
論文頁數: 74
中文關鍵詞: 發光二極體熱阻
外文關鍵詞: LED, thermal resistance
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們以高功率紅外線光源擬似熱源,建立出一套新的熱阻量測系統。此量測系統藉由紅外線熱像儀量測溫度,並求得待測物之熱阻,本論文中以此系統針對各種目前市面上可獲得不同之LED封裝基板做熱阻量測,並與有限元素分析法建立之模型得到理想熱阻值加以比照。另外針對同一製程的基板和晶片不同bonding在基板上之熱阻表現可由實驗結果與模擬結果相互比對以推估不同基板之接面熱阻值。


    In this thesis, we used a high power infrared light source to emulate the heat source and built a novel system for thermal resistance measurement. In this system, a thermal camera is used to measure the temperature distribution. With the temperature distribution over the entire sample measured, we can obtain the thermal resistance of the test sample. All commercially available high power LED packages’ thermal resistances were measured based on the system that we constructed. The measurement results were compared with theoretical models which base on the finite element analysis method. Contact thermal resistance can also be estimated by comparing the experimental measurement results with the FEA simulation results. A brief discussion was provided about the contact thermal resistance contributed by different bonding methods which using different bonding material based on the analysis developed.

    摘要.............................................................................................................I Abstract.....................................................................................................II 致謝..........................................................................................................III 第一章 緒論………………………………………………………………1 1.1 前言………………………………………………………….1 1.2 研究動機與目的…………………………………………….3 1.3 論文大綱…………………………………………………….3 第二章 基本理論………………………………………………………...4 2.1 引言………………………………………………………….4 2.2 基本熱傳導原理…………………………………………….5 2.2.1 傳導…………………………………………………..…5 2.2.2 對流……………………………………………..………7 2.2.3 輻射……………………………………………..………7 2.3 熱阻……………………………………………..…………...8 第三章 熱阻量測實驗………………………………………………....10 3.1 實驗架構………………………………………...…………10 3.2 量測結果與討論……………………………………....…...10 第四章 有限元素數值模擬分析與實驗結果討論................................32 4.1 有限元素分析簡介…………………………...………...….32 4.2物件之幾何參數及材料參數……………………….……...33 4.3定義數值模擬之邊界條件……………………………….....38 4.4模擬數值分析與量測結果之比對……………………..…...49 4.5 不同LED封裝bonding接面熱阻之分析…………………59 第五章 結論與未來展望…………………….………………………...65 5.1 結論………………...…………….………………………...65 5.2 未來展望………………………...…………….………...…66 參考文獻……………………………………………………………….67 中英文名詞對照表…………………………………………………….69

    [1] N. Holonyak Jr. and S. F. Bevaqua, “Coherent(visible) Light Emission Form Ga(As1-xPx) Junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
    [2] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based light emitters and laser Spinger (1997).
    [3]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925, DEC. 7,1999.
    [4] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diode,” Appl. Phys. Lett. 64, 1687-1689 (1994).
    [5] 孫慶成,LED的效率極限與照明光學設計的極致,2009 LED 固態照明研討
    會,中華民國九十八年
    [6] F. Wall, P. S. Martin, and G. Harbers, “High power LED package Requirment,” Proc. SPIE 5187, 85-92 (2004).
    [7] Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163-2165 (2004).
    [8] S. Todoroki, M. Sawai, and K. Aiki, “Temperature distribution along the striped active region in high-power GaAlAs visible lasers,” J. Appl. Phys. 58, 1124-1128 (1985).
    [9] S. Murata and H. Nakada, “Adding a heat bypass improves the thermal characteristics of a 50μm spaced 8-beam laser diode array,” J. Appl. Phys. 72, 2514-2516 (1992).
    [10] W. Epperlein and G. L. Bona, “Influence of the vertical structure on the mirror facet temperatures of visible GaInP quantum well lasers,” Appl. Phys. Lett. 61, 3074 -3076 (1993).
    [11] D. C. Hall, L. Goldberg, and D. Mehuys, “Technique for lateral temperature profiling in optoelectronic devices using a photoluminescence microprobe,” Appl. Phys. Lett. 61, 384-386 (1992).
    [12] Y. Gu and N. Narendran, “A noncontact method for determining junction temperature of phosphor-converted white LEDs,” Proc. SPIE 5187, 107-114 (2004).
    [13] L. Kim and M. W. Shin, “Thermal resistance measurement of LED package with multichips,” IEEE T.ransactions on Components and Packaging Technologies 30, 632-636 (2007).
    [14] D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, New York 2003).
    [15] Siegfried Luger, “Thermal Management White LED Challenges LED lighting Control System, ” LED professional Magazine 04, 15-17 (2007).
    [16] C. Kittel, and H Kroemer Thermal physics (W. H. Freeman and Company, San Francisco 1980).
    [17] J. P. Holman, Heat Transfer (McGraw-Hill, New York 1996).
    [18] R. Siegel, and J. R. Howell Thermal radiation heat transfer (Hemisphere Pub. Corp, Washington 1981).

    QR CODE
    :::