| 研究生: |
胡林楙 Lin-Mao Hu |
|---|---|
| 論文名稱: |
基盤土壤液化引致的側潰對上方土堤之影響及其改善對策 Countermeasures for Reducing Embankment Settlement and Deformation Induced by Lateral Spreading |
| 指導教授: |
洪汶宜
Wen-Yi Hung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 離心模型試驗 、土壤液化 、地盤改良 、側向滑移 、土堤 |
| 外文關鍵詞: | centrifuge modeling, liquefaction, ground improvement, lateral spreading, embankment |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1964日本新瀉地震、1995阪神大地震、2001年東日本大地震發生及2016年的美濃地震時,在震央附近許多地方都發生土壤液化之現象。臺灣西部平原區多屬地質軟弱的沖積地層,且地下水位面較高,而臺灣位於歐亞板塊交界,地震頻繁,在大地震發生時,極有可能發生土壤液化現象。若土堤結構位於砂質地盤、河岸或河堤邊,因受振引致土壤液化與側向滑動,會使土堤產生相當大的損害。
本研究藉由中央大學地工離心機暨振動台進行離心模型試驗,在50倍的人造離心重力場中,模擬現地土層及土堤在受振過程與土壤發生液化後之行為。並同時在離心模型中嘗試以地盤改良工法改善因土壤液化與側潰引致土堤結構的位移行為並比較各工法之成效。本研究採用的改良工法有垂直排水工法、礫石樁工法、降低飽和度工法及減輕載重工法;其中,降低飽和度工法為使用幫浦將氣體打入土壤孔隙中以降低土壤之飽和度,減輕載重工法為使用發泡性聚苯乙烯取代土堤的土壤以降低地盤上的載重。各工法改良之成效是以土層與土堤受振時之加速度歷時、試驗過程土壤中激發的超額孔隙水壓與試驗前後土堤沉陷、側向位移量進行評估。
West Taiwan plain is soft alluvium ground with high ground water level. Moreover, Taiwan is located at Circum-Pacific seismic belt, liquefaction usually occurs during large earthquake. For an embankment which is built on the liquefiable ground with gentle slope, the soil liquefaction and lateral spreading due to earthquake would cause significance damage to the embankment. Therefore, it’s very important to understand the failure behavior of lateral spreading for an upper structure on liquefiable gentle slope during shaking.
A series of centrifuge shaking table test are designed to test in 50 g acceleration field. The main objective of this research is to discuss the effectiveness of different countermeasures against the embankment settlement and displacement by lateral spreading. The vertical draining system, granular column method, soil de-saturated method and EPS material were applied to the centrifuge models. The embankment settlement and displacement, acceleration and the pore water pressure histories of improved and non-improved models are measured and compared to discuss the effectiveness of the countermeasures.
[1] Adalier, K., Pamuk, A., Zimmie, T.F., “Earthquake retrofit of highway/railway embankments by sheet-pile walls,” Journal of Geotechnical and Geological Engineering, Vol. 22, pp. 73-88 (2004).
[2] Brennan, A. J. and Madabhushi, S.P.G., “Liquefaction remediation by vertical drains with varying penetration depths,” Soil Dynamics and Earthquake Engineering, Vol. 26, pp. 469-475 (2006).
[3] Das, B.M., Principles of Foundation Engineering, Brooks/Cole Publishing Company, Pacific Grove, California (2008).
[4] Hazen, A., “Hydraulic-fill dams,” Transactions of the American Society of Civil Engineers, Vol. 83, pp. 1717-1745 (1920).
[5] Howell, R., Rathje, E.M., Kamai, R., Boulanger, R., “Centrifuge Modeling of Prefabricated Vertical Drains for Liquefaction Remediation,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 138, No. 3, pp. 262-271 (2012).
[6] Ishihara, K., “Stability of natural deposits during earthquake,” Proceedings. of 11th International Conference on Soil Mechanics and Foundation Engineering., San Francisco, vol.1, pp. 321-376 (1985).
[7] Koga, Y. and Matsuo, O., “Shaking table tests of embankments resting on liquefiable sandy ground,” Japanese Society of soil Mechanics and Foundation Engineering, Vol. 30, No. 4, pp. 162-174 (1990).
[8] Koseki, J., Matsuo, O., Koga, Y., “Uplift Behavior of Underground Structure Caused by Liquefaction of Surrounding Soil During Earthquake,” Japanese Society of soil Mechanics and Foundation Engineering, Vol. 37, No. 1, pp. 97-108 (1997)
[9] Krammer, S.L., Geotechnical earthquake engineering, Prentice Hall, New Jersey (1996).
[10] Marasini, N. P. and Madabhushi, S.P.G., “Air injection to mitigate liquefaction under light structures,” International Journal of Physical Modelling in Geotechnics, Vol. 15(3), pp. 129-140 (2015).
[11] Okamura, M. and Matsuo, O., “Effects of remedial measures for mitigating embankment settlement due to foundation liquefaction,” International Journal of Physical Modelling in Geotechnical, Vol. 2, pp. 1-12 (2002).
[12] Okamura, M. and Teraoka, T., “Shaking Table Tests to Investigate Soil Desaturation as a Liquefaction Countermeasure,” Workshop on Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, University of California, Davis, California, United States (2005).
[13] Rauch, A., “EPOLLS: An Empirical Method for Predicting Surface Displacements. Due to Liquefaction-Induced Lateral Spreading in Earthquakes.” Ph.D. dissertation, Virginia Polytechnic Institute and State University (1997)
[14] Tomida, Y. and Okamura, M., “Verification of Desaturation Technique as a Liquefaction Countermeasure for Existing Embankments,” International Journal of Landslide And Environment, Vol. 3, No.1-3 (2015).
[15] Yoshimi, Y., Tanaka, A., Tokimatsu, K., “Liquefaction Resistance of A Partially Saturated Sand,” Japanese Society of soil Mechanics and Foundation Engineering, Vol. 29, No. 3, pp. 157-162 (1989).
[16] Zeybek, A. and Madabhushi, S.P.G., “Influence of air injection on the liquefaction-induced deformation mechanisms beneath shallow foundations,” Soil Dynamics and Earthquake Engineering, Vol. 97, pp. 266-276 (2017).
[17] 何泰源、吳文隆、詹穎裕,「洲美快速道路堤防段工程應用EPS輕質填土案例探討」,中華技術季刊,第六十八期,台灣(2005)。
[18] 洪汶宜,「加勁擋土牆的斷裂破壞行為與內部穩定分析」,博士論文,國立中央大學土木工程學系,中壢(2008)。
[19] 黃俊學,「基盤土壤液化對上方土堤位移的影響」,碩士論文,國立中央大學土木工程學系,中壢(2016)。
[20] 黃富國、余明山、何政弘,「九二一集集大震土壤液化震害與問題探討」,土木工程技術期刊,第三卷,第三期,第49~79頁,台灣(1999)。