跳到主要內容

簡易檢索 / 詳目顯示

研究生: 高行隆
Hsin-Lung Kao
論文名稱: YbYAG薄片雷射與多通放大器開發研究
Yb:YAG Thin Disk Laser and Multiple-pass Amplifier
指導教授: 鍾德元
Te-yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 86
中文關鍵詞: 薄片雷射釔鋁石榴石薄片多通放大器
外文關鍵詞: Yb:YAG, Thin disk laser, Thin disk multiple-pass amplifier
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了獲得高平均功率同調光,可藉由提升TDL架構的pump laser-TDL光轉換效率或是提高seed從MA架構獲得的增益來達成。以中山大學提供的Yb:YAG樣本作增益介質,通過自行設計的激發腔與晶體散熱系統,本論文初步建立了TDL架構與MA架構。對於TDL架構,其在共振腔長度為270 mm、輸出耦合鏡之曲率半徑與反射率分別為500 mm及95%、晶體濃度為13.3 at%時,藉由50 Hz repetition rate、duty cycle 10%,平均功率43.6 W的pump laser能夠有平均輸出功率為22.68 W,slope efficiency為61.3%,pump laser-TDL光轉換效率52%。對於MA架構,建立了二通放大器,使1040 nm、pulse energy 25.68 nJ的seed光能有1.8倍的增益,驗證了在平均功率12.4 W的pump laser,晶體能有1.55×10^21 (cm^(-3))的雷射上能階電子密度。通過二通放大結果,可推估seed laser pulse energy 2.568 μJ,其中心波長改為1030 nm且FWHM 1nm,能在趟數增加至9趟時有最大輸出能量0.5 J。


    To achieve high average power coherent light beam, the pump laser-TDL light transfer efficiency of a TDL system or the gain of a MA system should be enhanced. This research builds up a fundamental TDL system and a MA system, which based on the Yb:YAG samples offered by NSYSU as gain medium with self-designed pump cavity and crystal cooling system. For TDL system, this research shows that a 13.3 at.%, 300 μm Yb:YAG with a 270 mm long resonator which output coupler’s radius of curvature and reflectivity is 500 mm and 95%,respectively, pumped by a 50 Hz repetition rate,duty cycle 10%,average power 43.6 W pump laser, can deliver TDL, which average output power comes to 22.68 W and the slope efficiency is 61.3%, the pump laser-TDL light transfer efficiency is 52%. For MA system, a 2-pass amplifier is built to let a 1040 nm, pulse energy 25.68 nJ seed has a 1.8x amplification, which proves that the upper laser level density should be 1.55×10^21 (cm^(-3)) when pumped by an average power 12.4 W pump laser. By the results of 2-pass amplifier, the simulation shows a 9-pass amplifier can amplify the seed laser, which central wavelength is 1030 nm and FWHM 1 nm , pulse energy 2.568 μJ, to 0.5 J.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 符號表 XI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 研究動機 6 1.4 論文架構 6 第二章 背景知識 8 2.1 TDL與MA基礎架構 8 2.1.1 TDL基礎架構 8 2.1.2 MA基礎架構 9 2.2 Yb:YAG作為增益介質之特性 11 2.2.1 Yb:YAG的吸收與放射光譜及lifetime 11 2.2.2 Yb:YAG熱傳導係數 13 2.3 Yb:YAG TDL與MA的能量轉換 14 2.3.1 吸收與雷射上能階電子產生 14 2.3.2 TDL輸出 16 2.3.3 MA增益 16 2.4 晶體溫度分布 18 2.4.1 熱源 18 2.4.2 散熱系統的幾何與邊界條件 18 2.4.3 TD晶體表面溫度 19 2.5 熱透鏡效應 19 第三章 理論模型之建立與模擬 21 3.1 Pump laser之吸收 21 3.2 晶體溫度 24 3.3 TDL輸出功率 28 3.4 MA增益 30 第四章 TDL系統與架設 37 4.1 Pump laser之光譜與輸出功率 37 4.2 激發系統架構 38 4.2.1 Pump laser至Yb:YAG晶體光學系統 38 4.2.2 Pump cavity光學設計 39 4.3 Yb:YAG晶體及其冷卻系統 41 4.3.1 Yb:YAG晶體 41 4.3.2 Yb:YAG TD的固定與散熱系統 42 4.4 雷射共振腔架構 45 4.5 Yb:YAG TD表面溫度量測與熱透鏡 46 第五章 TDL輸出結果與討論 49 5.1 Pump laser在晶體上之成像 49 5.2 晶體對pump laser之吸收 49 5.3 受共振腔條件影響之雷射行為 51 5.3.1 共振腔長度 51 5.3.2 輸出耦合鏡曲率 52 5.3.3 輸出耦合鏡之反射率 53 5.4 晶體的直徑與摻雜濃度對雷射行為之影響 55 第六章 MA系統與架設 59 6.1 晶體與激發系統 59 6.2 Seed laser 59 6.3 放大系統架構 61 第七章 放大結果與討論 63 7.1 二通放大結果 63 7.2 放大器改進 65 第八章 結論 67 參考文獻 68

    1. Patel, C.K.N., Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2. Physical Review, 1964. 136(5A): p. A1187-A1193.
    2. Maiman, T.H., Stimulated Optical Radiation in Ruby. Nature, 1960. 187(4736): p. 493-494.
    3. Hecht, J., Short history of Laser development. Applied optics, 2010. 49: p. F99-122.
    4. Geusic, J.E., H.M. Marcos, and L.G. Van Uitert, Laser Oscillations in Nd-DOPED Yttrium Aluminum, Yttrium Gallium and Gadolinium Garnets. Applied Physics Letters, 1964. 4: p. 182-184.
    5. Kay, R.B., et al., Derivation of the Frantz-Nodvik Equation for Diode-Side-Pumped Zigzag Slab Laser Amplifiers With Gaussian Laser Mode and Pump Beam Shapes. IEEE Journal of Quantum Electronics, 2011. 47(5): p. 745-749.
    6. Giesen, A., et al., Scalable concept for diode-pumped high-power solid-state lasers. Applied Physics B, 1994. 58(5): p. 365-372.
    7. Speiser, J., Thin disk lasers: history and prospects. 2016. 98930L.
    8. Saravani, M., A.F.M. Jafarnia, and M. Azizi, Effect of heat spreader thickness and material on temperature distribution and stresses in thin disk laser crystals. Optics & Laser Technology, 2012. 44(4): p. 756-762.
    9. Uusikallio, S., et al., Determination of effective heat transfer coefficient for water spray cooling of steel. Procedia Manufacturing, 2020. 50: p. 488-491.
    10. Radmard, S., A. Moshaii, and K. Pasandideh, 400 W average power Q-switched Yb:YAG thin-disk-laser. Scientific Reports, 2022. 12(1): p. 16918.
    11. Huang, Y., et al., A multi-pass pumping scheme for thin disk lasers with good anti-disturbance ability. Optics Express, 2015. 23.
    12. Yingnan Peng, Z.W., Dehua Li, Jiangfeng Zhu, Zhiyi Wei, A 12.1-W SESAM mode-locked Yb:YAG thin disk laser. Chin. Phys. B, 2016. 25(5): p. 54205-054205.
    13. Dai, L., et al., High-efficiency, high-repetition-rate cavity-dumped Q-switched Yb:YAG thin-disk laser based on a 72-pass pump module. Optics Express, 2022. 30.
    14. Negel, J.-P., et al., Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm. Optics Express, 2015. 23(16): p. 21064-21077.
    15. Koerner, J., et al., Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20°C and 200°C and predictions on their influence on laser performance. Journal of the Optical Society of America B, 2012. 29(9): p. 2493-2502.
    16. Lin, Z., et al., Amplified spontaneous emission model of thin disk laser with nonuniform temperature distribution. Journal of the Optical Society of America B, 2017. 34(3): p. 625-632.
    17. Yang, P., P. Deng, and Z. Yin, Concentration quenching in Yb:YAG. Journal of Luminescence, 2002. 97(1): p. 51-54.
    18. Cardinali, V., et al., Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature. Optical Materials, 2012. 34(6): p. 990-994.
    19. Koechner, W., Solid-State Laser Engineering. 6 ed. Springer Series in Optical Sciences. 2006: Springer New York, NY.
    20. Furuse, H., R. Yasuhara, and K. Hiraga, Thermo-optic properties of ceramic YAG at high temperatures. Optical Materials Express, 2014. 4.
    21. Paschotta, R., Gradient-index Lenses, in RP Photonics Encyclopedia.
    22. Vlasova, S., et al., Investigation of temperature dependence of radiation from semiconductor lasers and light emitting diodes. IOP Conference Series: Earth and Environmental Science, 2020. 539(1): p. 012137.
    23. Wendelstorf, J., K.H. Spitzer, and R. Wendelstorf, Spray water cooling heat transfer at high temperatures and liquid mass fluxes. International Journal of Heat and Mass Transfer, 2008. 51(19): p. 4902-4910.
    24. Fukuda, M., et al., Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy. Applied Physics B, 2010. 100(2): p. 377-382.
    25. Nagisetty, S., et al., Lasing and thermal characteristics of Yb:YAG/YAG composite with atomic diffusion bonding. Laser Physics Letters, 2017. 14: p. 015001.
    26. Lin, G.-T., Research on the Crystal Growth and Properties of Yb:Y3Al5O12 Grown by Czochralski Pulling Technique. 2023, Department of Materials and Optoelectronic Science,NSYSU. p. 61.

    QR CODE
    :::