| 研究生: |
邱俊雄 Jun-xiong Qiu |
|---|---|
| 論文名稱: |
矽晶電化學放電穿孔加工及其中空孔微電鍍之研究 Study on Silicon by Using Electrochemical Discharge Drilling and Micro Plated-Hollow Hole Method |
| 指導教授: |
顏炳華
Biing-hwa Yan 王阿成 A-cheng Wang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 電化學放電加工 、方錐螺旋刀具電極 、微孔 、單晶矽 、中空電鍍孔 、電鍍 |
| 外文關鍵詞: | Electrochemical discharge machining, Square helical tool electrode, Micro-hole, Monocrystalline silicon, Plated-hollow hole, Electroplating |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今單晶矽加工大多使用電化學加工法且電解液幾乎以氫氟酸或氟化氨相關溶液,其加工成本高並更容易造成人員及環境的危害,本研究提出以氫氧化鈉為電解液進行電化學放電加工,能有改善上述問題及增進加工效率。利用線放電研磨加工法製作方錐螺旋刀具電極,刀具電極的兩側平行面的外形特性,可減少側邊放電過切現象及保有一半螺旋面以增加電解液循環,可有效的提升加工效率及加工精度並利用螺旋刀具電極加工不鏽鋼/矽晶太陽能材料亦有相當優良得加工品質。從實驗結果得知,由於方錐螺旋刀具電極外形特性,大幅減低了氣泡堆積微孔的入口處的現象、減少熱影響區產生,而螺旋刀具電極,雖然具有足夠的螺旋面能增加電解液循環,但受限於兩側曲面螺旋外形的影響導致影響加工效率;並且由於方錐螺旋刀具電極前端鑽頭的外形,不會產生像螺旋刀具電極在較平整的端面處放電火花分散對在工件初始加工時微孔入口形成擴孔喇叭口的狀態。最後結合脈衝電壓及方錐螺旋刀具電極的加工方式與直流電壓及螺旋刀具電極加工效率相互比較下,大幅的減少加工時間及刀具電極消耗量,獲得較高精度之單晶矽微孔。
銅電鍍技術,因其操作簡單、安全且價格低廉,所以大量應用電子元件層間連接方式,但大多以通孔、盲孔為主要的研究課題,本研究提出ㄧ種新型的電極轉動電鍍法,利用電化學放電鑽孔完成孔洞製作後,更新電解液為電鍍液,更換電極極性,改變為電鍍裝置,將製孔、電鍍結合於同ㄧ製程中,利用刀具電極通入孔內實施轉動,實施中空孔電鍍加工,製作中孔電鍍孔,能有效改善導電、散熱及元件裝配之功用,以提高加工效率及電鍍孔於工業上的應用。從實驗結果得知,刀具電極通入孔內加工能增加電鍍液循環效率確實比無刀具電極通入孔內加工,能獲得更佳的銅電鍍沉積效果,最後在加工條件為加工電壓0.3V、加工時間60min、刀具電極轉速100rpm時,能製作出鍍層平坦均勻、填孔效果佳的中空電鍍孔。
Monocrystalline silicon, being hard, brittle and semi-conductive, poses problems to traditional machining. In this study, it is processed by electrochemical discharge machining (ECDM), which involves high-temperature melting and accelerated chemical etching under the high electrical energy discharged on the electrode tip during electrolysis. To enhance efficiency and precision in monocrystalline silicon micro-hole drilling, square helical tool electrode and pulse voltage are used with sodium hydroxide as the electrolyte. Experimental results show that square helical tool electrode is superior to helical tool electrode for ECDM of monocrystalline silicon. Greater machining efficiency and better micro-hole quality can be achieved by its unique geometrical design which enables stable and regular electrical discharge. It is also have excellent quality to machining composite silicon-based material by using helical tool electrode quality .Pulse voltage with appropriate proportion of pulse-on and pulse-off time also ensures rapid replenishment and good circulation of electrolyte as well as efficient debris removal. Sodium hydroxide can replace hydrofluoric acid or ammonium fluoride as the electrolyte. Not only does it incur lower costs, it is also safe and environmental friendly.
Copper plating, a safe and inexpensive technology with simple operation, has been widely applied to interlayer connection of electronic components via through holes, and blind holes. This study proposes coupling Electrochemical Discharge Machining (ECDM) with rotation and penetration of electrode for fabricating plated hollow holes. Not only does this approach combine hole-making and electroplating in a single process, which saves time, it also improves conductivity, heat dissipation and component assembly, thus enhancing processing efficiency of plated holes in industrial applications. Experimental results show that rotation and penetration of tool electrode contribute to better plating effect, solving the problems including accumulation of plating solution at hole entrance and plated layer of uneven and coarse structure. Finally, ECDM under machining voltage, 0.3 V; machining time, 60 min; and rotational speed of electrode, 100 rpm yielded plated hollow holes with even coating and flat smooth hole wall surface.
[1] C.S. Taylor, “Investigation on anode discharge in electrolysis of melted sodium chloride”, Trans. Electro-chemical Society, Vol.47, pp. 301-305, 1925.
[2] H. H. Kellog, “The interface observation of poles in water electrolysis”, Journal of Electrochemical Society, Vol. 97, pp.133-137, 1950.
[3] H. Kurafuji and K. Suda, “Electrical discharge drilling of glass”, Ann. CIRP. Vo. 16, pp. 415-9, 1968.
[4] D.J. Kim, Y. Ahn, S.H. Lee, Y.K. Kim , “Voltage pulse frequency and duty
ratio effects in an electrochemical discharge microdrilling process of Pyrex
glass”, International Journal of Machine Tools &
Manufacture ,Vol.46 ,pp.1064-1067, 2005.
[5] R. Wüthrich, B. Despont, P. Maillard , H. Bleuler, “Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration”, Journal of Micromechanics and Microengineering, Vol.16 ,pp.28-31, 2006.
[6] B.H. Yan, C.T. Yang, F.Y. Huang ,Z.-H. Lu, “Electrophoretic deposition
grinding (EPDG) for improving the precision of microholes drilled via
ECDM”, Journal of Micromechanics and Microengineering , Vol.
17 ,pp. 376-383,2007.
[7] Z.P. Zheng, H.C. Su, F.Y. Huang , B.H. Yan, “ The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process”, Journal of Micromechanics and Microengineering, Vol. 17,pp. 265-272,2007.
[8] Z.P. Zheng, J.K. Lin, F.Y. Huang , B.H. Yan , “Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage”, Journal of Micromechanics and Microengineering, Vol. 18 ,025014(6pp) ,2008.
[9] M.S. Han, B.K. Min, S.J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte” Journal of Micromechanics and Microengineering, Vol. 19 ,065004(8pp),2009.
[10] C.P. Cheng, K.L Wu, C.C. Mai , C.K. Yang , Y.S. Hsu, B.H.Yan, “Study of gas film quality in electrochemical discharge machining”, Journal of Machine Tools & Manufacture, Vol.50 ,pp.689-697,2010.
[11] C.P. Cheng, K.L. Wu, C.C. Mai, Y.S. Hsu, B.H. Yan, “Magnetic field-assisted electrochemical discharge machining”,Journal of Micromechanics and Microengineering, Vol. 20 075019(7pp),2010.
[12] C.K. Yang , C. P. Cheng , C.C. Mai, A.C. Wang, J.C. Hung , B.H. Yan , “Effect of surface roughness of tool electrode materials in ECDM performance”,International Journal of Machine Tools & Manufacture, Vol.50 ,pp.1088-1096,2010.
[13] C.K. Yang , K.L.Wu, J.C. Hung, S.M. Lee, J.C. Lin , B.H.Yan, “Enhancement of ECDM efficiency and accuracy by spherical tool electrode”,International Journal of Machine Tools & Manufacture, Vol.51 ,pp.528–535,2011.
[14] J.D.A. Ziki , T. F. Didar , R. Wüthrich, “Micro-texturing channel surfaces on glass with spark assisted chemical engraving”, International Journal of Machine Tools & Manufacture, Vol.57 ,pp. 66-72,2012.
[15] J.D.A. Ziki , R. Wüthrich, “Tool wear and tool thermal expansion during micro-machining by spark assisted chemical engraving”, The International Journal of Advanced Manufacturing Technolog, Vol.61 ,pp. 481-486,2012.
[16] W. Wang , Z.X. Liu , W. Zhang , Y.H. Huang , D.M. Allen, “Abrasive electrochemical multi-wire slicing of solar silicon ingots into wafers”, CIRP Annals - Manufacturing Technology,Vol. 60 ,pp.255-258,2011.
[17] J. Murray, D. Zdebski, A.T. Clare, “Workpiece debris deposition on tool electrodes and secondary discharge phenomena in micro-EDM”, Journal of Materials Processing Technology, Vol. 212 ,pp.1537-1547,2012.
[18] S.Z. Chavoshi, A.M. Behagh , “A note on influential control parameters for drilling of hard-to-machine steel by electrochemical discharge machining”. The International Journal of Advanced Manufacturing Technolog, Vol.71, pp.1883–1887,2014.
[19] J.W. Liu, T.M. Yue, Z.N. Guo, “Grinding-aided electrochemical discharge machining of particulate reinforced metal matrix composites ”, The International Journal of Advanced Manufacturing Technolog,vol.68 ,pp.2349–2357,2013.
[20] H. Kr¨otz, R.Roth, K.Wegener, “Experimental investigation and simulation of heat flux into metallic surfaces due to single discharges in micro-electrochemical arc machining (micro-ECAM)”, The International Journal of Advanced Manufacturing Technology,vol. 68, pp.1267–1275,2013.
[21] A. Manna, V. Narang, “A study on micro machining of e-glass–fibre–epoxy composite by ECSM process”. The International Journal of Advanced Manufacturing Technolog, Vol.61, pp.1191–1197, 2012.
[22] T. Kobayashi, J. Kawasaki, K. Mihara, H. Honma, “Via-filling using electroplating for build-up PCBs”, Electrochimica Acta, Vol.47, pp.85-89,2001.
[23] S. C.Hong , W.G.Lee , W. J. Kim, J. H. Kim , J. P.Jung, “Reduction of defects in TSV filled with Cu by high-speed 3-step PPR for 3D Si chip stacking”, Microelectronics Reliability , Vol.51, pp.2228-2235,2011.
[24] B.N. Park , Y.S.Sohn, S.Y. Choi, “Effects of a magnetic field on the copper metallization using the electroplating process”, Microelectronic Engineering , Vol.85, pp.308-314,2007.
[25] Q. Chen, Z. Wang, J. Cai, L. Liu, “The influence of ultrasonic agitation on copper electroplating of blind-vias for SOI three-dimensional integration”, Microelectronic Engineering , Vol.87, pp.527-531,2010.
[26] S. Miura, H. Honmab, “Advanced copper electroplating for application of electronics”, Surface and Coatings Technology, Vol.169-170, pp. 91-95,2003.
[27] W.P. Dow, M.Y. Yen, C.W.Liu, C.C. Huang, “Enhancement of filling performance of a copper plating formula at low chloride concentration”, Electrochimica Acta , Vol.53, pp.3610-3619,2008.
[28] C. Fang , A.L. Corre, D. Yon, “Copper electroplating into deep microvias for the‘ SiP‘application”, Microelectronic Engineering, Vol.88, pp.749-753,2011.
[29] C.H. Chen, C.W. Lu, S.M. Huangb, W.P. Dow, “Effects of supporting electrolytes on copper electroplating for filling through-hole”, Electrochimica Acta, Vol.56, pp.5954-5960,2011.
[30] R. Manu, S. Jayakrishnan, “Effect of organic dye on copper metallization of high aspect ratio through hole for interconnect application”, Materials Chemistry and Physics, Vol.135, pp.425-432,2012.
[31] V. Fascio, R. Wüthrich, H. Bleuler, “Spark assisted chemical engraving in the light of electrochemistry”, Electrochimica Acta, Vol. 49, pp.3997-4003, 2004.
[32] 楊程光,「電化學放電加工法應用於石英的精微加工研究」,國立中央大學,博士論文,民國100年。
[33] S. Skoczypiec, A. Ruszaj, “A sequential electrochemical–electrodischarge process for micropart manufacturing”, Precision Engineering, Vol. 38, pp.680-690, 2014.
[34] B. Jiang, S. Lan, J. Ni, Z. Zhang, “Experimental investigation of spark generation in electrochemicaldischarge machining of non-conducting materials”, Journal of Materials Processing Technology, Vol. 214, pp.892-898, 2014.
[35] M.R. Razfar, A. Behroozfara, J. Ni, “Study of the effects of tool longitudinal
oscillation on the machiningspeed of electrochemical discharge drilling of glass
”, Precision Engineering, Vol. 38, pp.885-892, 2014.
[36] B. Jiang,S. Lan, K. Wilt,J,Ni,“Modeling and experimental investigation of gas film in micro-electrochemical discharge machining process”, International Journal of Machine Tools & Manufacture, Vol. 90, pp.8-15, 2015.
[37] J.D.A. Ziki, R. Wüthrich,“The machining gap during constant velocity-feed glass micro-drilling by Spark Assisted Chemical Engraving”, Journal of Manufacturing Processes, Vol. 19, pp.87-94, 2015.