| 研究生: |
游喬筑 Yu,Chiao-Chu |
|---|---|
| 論文名稱: |
土石流集水區地貌分析 Geomorphological Analysis of Debris-Flow Watersheds |
| 指導教授: |
周憲德
Chou, Hsien-Ter |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 土石流潛勢溪流 、平廣溪 、塔羅灣溪 、險峻值(MR) 、形狀係數(F) |
| 外文關鍵詞: | Potential Debris-Flow Torrents, Pingguang Creek, Yayung-Truwan River, Melton Ratio (MR), Form Factor (F) |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
集水區險峻值(Melton Ratio, MR)可用於界定土砂災害類型,本研究以ESRI所開發的地理資訊系統(Geographic Information System, GIS) ArcGIS 分析數值地形模型(Digital Elevation Model, DEM),萃取集水區地貌參數,將主流上任一點之Melton Ratio 值與集水面積值無因次化,分析變化趨勢並將其分類成六種類型,討論各種類型之特性。本研究以新北市平廣溪、南投縣塔羅灣溪及加走寮溪、新竹縣泰崗溪及花蓮縣三棧北溪及魯丹溪作為主要研究之集水區,並以蘭陽溪及陳有蘭溪內部分集水區作為補充討論。本研究將高程差(ΔH)、坡度(S)及形狀係數(F)無因次化後與險峻值比較,得到不同分類下各地貌因子之間的關係。第三類通常為面積較大之集水區,且該分類之集水區數量最多;當集水區形狀係數較小時,通常會分類在第二類。現今可取得精度越來越高的DEM 數據,本研究探討不同
解析度對分析結果之影響,證實精度越高偏差越少,而上游對精度的敏感性很高,隨著下游集水區面積增加,其影響遞減。本研究將原始資料(5m×5m 之DEM)的MR'值作為基準,將粗化後的MR'結果(10m×10m、20m×20m 及40m×40m)與其相減,以MR'差值<0.1 作為判斷的分界,大型集水區偏差集中於√A' <0.20,小型集水區集中於√A' <0.35。
The Melton Ratio (MR) of watersheds is used to define the types of slopeland hazards. This study analyses Digital Elevation Model (DEM) with ArcGIS, a Geographic Information System (GIS) developed by ESRI. The geomorphological factors of the watershed were extracted first, then the MR and the drainage area along the main streams would be scaled by the values at the downstream end. The changes between them were classified into six types in order to determine the characteristics of each type. In this study, Pingguang Creek in New Taipei City, Yayung-Truwan River and Jia-Tzou-Liau Creek in Nantou County, Thyakan River in Hsinchu County, and
Yayung-Pratan River and Ludan River in Hualien County were used as the main watersheds for the study. Lanyang River and Kunhukan River were used as additional watersheds. In this study, the relationships between geomorphological factors in
different classifications were found out by comparing the dimensionless values of watershed relief (H), slope (S) and form factor (F) with MR. The majority of watersheds belongs to Type 3, which depicts a wide distribution in watershed area. When the F value of the watershed is smaller, it is usually classified into Type 2. In order to obtain the higher resolution with less bias, this study investigates the effect of different grid resolution on the morphometric parameter, i.e. the MR value. The upstream reach is more sensitive to the grid resolution, while the influence of grid resolution gradually decreases toward the downstream reach.
[1]行政院農業委員會水土保持局 (2017),「水土保持手冊」。
[2]沈哲緯、蕭震洋、羅文俊 (2012),「花蓮縣土石流潛勢溪流地文特性初探」,水保技術,7卷2期,P96-105。
[3]周憲德、旋子徽、王仲宇 (1997),「安珀颱風靳珩橋勘查報告」,台灣公路工程,第二十四卷第五期,P2-9。
[4]周憲德、曹鼎志、李璟芳、黃韋凱、黃郅軒、陳威宏、陸威宇 (2016),「坡地土砂災害之地文因子綜整判定及現地判釋(以平廣溪集水區為例)」,成果報告書。
[5]周憲德、陳筠翰、葉承霖、廖偉名、黃郅軒 (2023),「土石流潛勢溪流之地貌因子判釋及評估」,水土保持局期末報告書。
[6]陳筠翰 (2023),「集水區險峻值與地文因子之統合探討」,國立中央大學土木工程研究所,碩士論文。
[7]陳榮河、江英政 (1999),「新中橫公路邊坡破壞之調查」,第二屆土石流研討會論文集,P180-189。
[8]湯國安 (2014),「中國數字高程模型與數字地形分析研究進展」,地理學報, 第 69 卷第 9 期。
[9]湯國安、劉學軍、閭國年 (2005),「數字高程模型極地學分析的原理與方法」, 北京-科學出版社。
[10]經濟部水利署 (2010),「濁水溪水系支流塔羅灣溪治理基本計畫」。
[11]廖敏坤、黃美瑤 (2003),「 90年桃芝颱風災害台21線新中橫公路搶修紀要」。
[12]Cheng, Deqiang, Javed Iqbal, and Chunliu Gao (2023). “Debris Flow Gully Classification and Susceptibility Assessment Model Construction.” Land (Basel) 12.3: 571.
[13]Chopra, R., Dhiman, R.D., Sharma, P.(2005), “Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques”, Journal of the Indian Society of Remote Sensing, Vol. 33, No. 4.
[14]Horton, R.E.(1932), “Drainage-basin characteristics”, Transactions American Geophysical Union Volume 13, Issue1, pages 350-361.
[15]Hurtrez J.E., C. Sol and F. Lucazeau (1999), “Effect of Drainage Area on Hypsometry from an Analysis of Small-scale Drainage Basins in the Siwalik Hills (Central Nepal),” Earth Surf. Process. Landforms 24, pp.799~808.
[16]Jackson LE Jr, Kostaschuk RA, MacDonald GM(1987), “Identification of debris-flow hazard on alluvial fans in the Canadian Rocky Mountains”, Rev Eng Geol 7:115–124.
[17]Khare, D., Mondal, A., Mishra, P.K., Kundu, S., Meena, P.K.(2014), “Morphometric analysis for prioritization using remote sensing and GIS techniques in a hilly catchment in the state of Uttarakhand, India”, Indian Journal of Science and Technology, Vol 7(10), 1650-1662.
[18]Kienzle, Stefan(2004). “The Effect of DEM Raster Resolution on First Order, Second Order and Compound Terrain Derivatives.” Transactions in GIS 8.1: 83–111.
[19]Melton, Mark A.(1965), “The Geomorphic and Paleoclimatic Significance of Alluvial Deposits in Southern Arizona.” The Journal of geology 73.1: 1–38.
[20]O’callaghan, J.F. and Mark, D.M.(1984), “The Extraction of Drainage Networks from Digital levation Data”, Computer Graphics and Image Processing, 28:323-344
[21]Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin, 82(4), 1079-1084.
[22]S.K. Jenson and J.O. Domingue (1988), “Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis”
[23]Strahler, A. N.(1952), “Hypsometric (areaaltitude) analysis of erosional topography,”. Bulletin of the Geological Society of America 63 (1), pp. 1117~1141.
[24]Thakkar, A.K., Dhiman, S.D.(2007), “Morphometric analysis and prioritization of mini-watersheds in Mohr watershed, Gujarat using remote sensing and GIS techniques”, Journal of the Indian Society of Remote Sensing Volume 35, pages 313-321.
[25]Wilford, D.J., Sakals, M.E., Innes, J.L., Sidle, R.C., Bergerud, W.A.(2004), “Recognition of debris flow, debris flood and flood hazard through watershed morphometrics”, Landslides, Vol. 1, pp.61-66.
[26]Zhao, Z., Yang, Q., Benoy, G., Chow, T. L., Xing, Z., Rees, H. W. and Meng, F.-R. (2010) “Using Artificial Neural Network Models to Produce Soil Organic Carbon Content Distribution Maps across Landscapes.” Canadian journal of soil science, 90: 75-87.