跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃耀萱
Yao-hsuan Huang
論文名稱: 利用特徵點偵測之強健型數位影像浮水印
A Robust Image Watermarking Scheme based on Scale-Space Feature Point Detection
指導教授: 蘇柏齊
Po-chyi Su
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 61
中文關鍵詞: 數位浮水印幾何變形攻擊特徵點擷取
外文關鍵詞: digital watermarking, geometrical transformation, SIFT
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幾何變形攻擊,包括裁切、旋轉、尺度縮放,甚至隨機變形等,所產生的同步問題,對於數位影像浮水印的偵測影響極大。本研究提出了一種基於特徵點擷取之數位浮水印方法,來抵抗對於靜態圖片的幾何變形攻擊。首先,尺度不變之特徵點將會被擷取出來做為定位點,此特徵點亦能存活於一般的訊號處理以及仿射轉換等攻擊。利用此類特徵點適當的強韌性,我們依據特徵點位置建構出多個局部幾何不變之格狀形區域,並於每個局部幾何不變區域中嵌入兩種訊號,第一種為隱藏資訊之數位浮水印,以及第二種做為同步機制的訊號,此訊號又稱為樣板訊號。樣版訊號可以確保較大範圍之局部幾何不變區域能夠被擴張建構出來以提供經過幾何攻擊後之浮水印偵測。較大的偵測區域將使得浮水印嵌入量獲得提升,且浮水印的可信度也隨之增加。在偵測浮水印時,我們對於每個特徵點所定位之格狀區域參數進行微調整,尋找局部之最佳可能區域,浮水印訊號將因此被更可靠地偵測。實驗結果顯示我們所提出的浮水印方法對於幾何攻擊具有強健性,並且能夠抵抗一般的訊號處理攻擊。


    Geometrical transformations, such as cropping, rotation, scaling or even random bending, cause the synchronization problem of detecting the digital image watermark. This research presents a feature-based watermarking scheme to deal with geometrical attacks in still images. First, the scale-invariant feature extraction is applied to locate the interest points that can survive the signal processing
    procedures and affine transforms. A local invariant region based on the scale-space features of an image is then acquired. At each invariant region, two signals will be embedded, {em i.e.} the watermark carrying the hidden information and the extended synchronization pattern or grid, which helps to ensure that a reasonably large invariant region be available for carrying the watermark payload and increasing the confidence of watermark
    extraction. The detection of the grid is based on the local search by adjusting the related parameters of the grid to match with the possible hidden pattern so that the watermark can be retrieved afterwards. Experimental results demonstrate that the proposed scheme is robust against common image processing and geometrical
    attacks.

    1 Introduction 1 1.1 Signi cance of the Research . . . . . . . . . . . . . . 1 1.2 Contribution of the Research . . . . . . . . . . . . . . 3 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . 4 2 Review of the Related Work 5 3 The Proposed Watermarking Scheme 10 3.1 Scale-Space Feature Points Extraction . . . . . . . . 11 3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 Invariant Region Generation . . . . . . . . . . 18 3.2.2 Key Points Elimination . . . . . . . . . . . . . 19 3.2.3 Embedding Regions Extending . . . . . . . . 22 3.3 Watermark Embedding . . . . . . . . . . . . . . . . . 25 3.4 Watermark Detection . . . . . . . . . . . . . . . . . . 30 4 Experimental Results 35 4.1 False Alarm Analysis . . . . . . . . . . . . . . . . . . 36 4.2 Fidelity Test . . . . . . . . . . . . . . . . . . . . . . . 37 4.3 Robustness Test . . . . . . . . . . . . . . . . . . . . . 37 5 Conclusion and Future Work 45

    [1] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR), 23(3):345-405, 1991.
    [2] P. Bas, J.M. Chassery, and B. Macq. Geometrically invariant watermarking using feature points. IEEE Transactions on Image Processing, 11(9):1014-1028, 2002.
    [3] I. Cox, M. Miller, and J. Bloom. Digital watermark: Principle and practice, 2001.
    [4] X. Gao, C. Deng, X. Li, and D. Tao. Geometric Distortion Insensitive Image Watermarking in A ne Covariant Regions. IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews, 40(3):278-286, 2010.
    [5] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision conference, volume 15, page 50. Manchester, UK, 1988.
    [6] A. Herrigel, S. Voloshynovskiy, and Y. Rytsar. The watermark template attack. In SPIE Security and Watermarking of Multi-media Contents III, volume 4314, pages 394-405. Citeseer, 2001.
    [7] M. Kutter. Watermarking resisting to translation, rotation, and scaling. In SPIE The International Society for Optical Engineering, volume 3528, pages 423-431. Citeseer, 1999.
    [8] M. Kutter, S.K. Bhattacharjee, and T. Ebrahimi. Towards second generation watermarking schemes. In IEEE International Confernece on Image Process, volume 1, pages 320-323, 1999.
    [9] D.G. Lowe. Distinctive image features from scale-invariant key-points. International journal of computer vision, 60(2):91-110, 2004.
    [10] B.S. Manjunath, C. Shekhar, and R. Chellappa. A new approach to image feature detection with applications. Pattern Recognition, 29(4):627-640, 1996.
    [11] K. Mikolajczyk and C. Schmid. Scale & a ne invariant interest point detectors. International Journal of Computer Vision, 60(1):63-86, 2004.
    [12] S. Pereira and T. Pun. Fast robust template matching for a neresistant image watermarks. In Information Hiding, pages 199-210. Springer, 1999.
    [13] F.A.P. Petitcolas, M. Steinebach, F. Raynal, J. Dittmann,
    C. Fontaine, and N. Fates. A public automated web-based evaluation service for watermarking schemes: StirMark benchmark. In SPIE proceedings series, pages 575-584. Society of Photo-Optical Instrumentation Engineers, 2001.
    [14] J. Ruanaidh and T. Pun. Rotation, scale and translation invariant spread spectrum digital image watermarking. Signal processing, 66(3):303-317, 1998.
    [15] J. Seo and C. Yoo. Image watermarking based on invariant regions of scale-space representation. IEEE transactions on Signal Processing, 54(4):1537-1549, 2006.
    [16] S. Voloshynovskiy, A. Herrigel, N. Baumgaertner, and T. Pun. A stochastic approach to content adaptive digital image watermarking. In Information Hiding, pages 211-236. Springer, 1999.
    [17] X. Wang, J. Wu, and P. Niu. A new digital image watermarking algorithm resilient to desynchronization attacks. IEEE Transactions on Information Forensics and Security, 2(4):655-663, 2007.
    [18] A.B. Watson. Visually optimal DCT quantization matrices for individual images. In Data Compression Conference, pages 178-187. Citeseer, 1993.
    [19] D. Zheng, S. Wang, and J. Zhao. RST invariant image watermarking algorithm with mathematical modeling and analysis of the watermarking processes. IEEE Transactions on Image Processing, 18(5):1055-1068, 2009.
    [20] D. Zheng, J. Zhao, and A. El Saddik. RST-invariant digital image watermarking based on log-polar mapping and phase correlation. IEEE transactions on circuits and systems for video technology, 13(8):753-765, 2003.

    QR CODE
    :::