跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉家成
Jia-Cheng Ye
論文名稱: 大面積排列壓電奈米纖維應用於奈米發電機及自供電式形變感測器
Massively aligned piezoelectric nanofibers as nanogenerator and self-powered deformation sensor
指導教授: 傅尹坤
Yiin-Kuen Fuh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 43
中文關鍵詞: 近場電紡織技術壓電材料奈米纖維奈米發電機
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用近場電紡織技術(near-field electrospinning,NFES),研究壓電奈米纖維並且製作成奈米發電機(nanogenerator,NG),主要重點為(1)利用近場電紡織技術大面積排列壓電奈米纖維製造奈米發電機,(2)奈米發電機疊加輸出與訊號驗證,(3)奈米發電機作為自供電式形變感測器。以直寫(Direct-write)方式將壓電高分子材料聚偏氟乙烯(polyvinylidene fluoride,PVDF)利用NFES技術將奈米纖維(nanofibers,NFs)大面積排列在可撓性基底上製作成奈米發電機,並且進行一系列訊號量測與驗證。為了使NG輸出增加,我們改良電極設計成功使輸出提升,並將NG以疊加方式嘗試提高輸出,成功將電壓輸出提高到20V。另外,我們將NG固定於人體手指上運用手指關節移動使NG有訊號產生。最後,我們使用可撓性更好的材料當基底,成功製作出厚度僅200 μm的NG,由於可撓性佳的基底加上厚度薄,我們將NG固定在旗子上使NG可以隨旗子擺動利用風力轉換成電力作為自供電式形變感測器。


    This thesis mainly research fabrication of nanogenerator, piezoelectric technology and application in electrospinning. The focus of the study is (1) Massively parallel aligned nanofibers-based nanogenerator deposited via near-field electrospinning, (2) Superposition of nanogenerator and measurement, (3) A flexible, self-powered deformation sensor based on nanogenerator. we demonstrate a direct-write, in-situ poled polyvinylidene fluoride (PVDF) nanofiber arrays that could functions as a self-powered active deformation sensor. The fabricated hybrid structure of sensor/nanogenerator (NG) is realized via direct deposition of near-field electrospun nanofibers on Cu-foil electrode of thickness ~200 μm and fully encapsulated on a flexible substrate. Capable of integrating into fabric such as a waving flag due to high flexibility and excellent conformability, the nanofiber-based device can serve as an active deformation sensor under ambient wind-speed and the feasibility of efficiently convert the flutter motion into electricity are also demonstrated. This low-cost, simple structure, high sensitivity and good environment-friendly nanofibers is a very promising material/technology as practical energy harvesting devices and self-powered sensors and capable of scavenging very small wind power or mechanical induced vibration.

    摘要 I Abstract II 誌謝 III Content IV 圖目錄 VI 表目錄 IX 第一章緒論 1 1-1電紡織技術 1 1-2奈米發電機 3 1-4 論文架構 5 第二章利用近場電紡織技術製作壓電奈米纖維發電機多根奈米纖維生成技術 6 2-1導論 6 2-2實驗 6 2-2-1 電紡織溶液 6 2-2-2 電紡織設備架構 7 2-2-3 直寫(direct-write)方式奈米發電機製作 8 2-3結果與討論 9 第三章奈奈米發電機疊加輸出與訊號驗證 16 3-1 導論 16 3-2 實驗 16 3-2-1 量測設備架構 16 3-2-2 訊號量測 16 3-3結果與討論 17 第四章奈米發電機-自供電式形變感測器 23 4-1導論 23 4-2實驗 23 4-2-1 電紡織溶液 23 4-2-2 改良式基板 24 4-2結果與討論 25 第五章結論 33 參考文獻 34 附錄 36

    [1]T. Kowalewski, S. Blonski and S. Barral, Technical Sciences.53,4,(2005).
    [2]F.L. Zhou, R.H. Gong and I. Porat, J Appl Polym Sci.115, 2591,(2010).
    [3]G. Taylor, Proc. R. Soc, London.280, 383,(1964).
    [4]A. L. Yarin and E. Zussman.45,2977,( 2004).
    [5]J. D. Schiffman, C. L. Schauer, Biomacromolecules.8,2665,(2007).
    [6]F. L. Zhou, R. H. Gong and I. Porat, J Mater Sci.44,5501,(2009).
    [7]H. Na, Q. Li, H. Sun, C. Zhao and X. Yuan1, POLYM ENG SCI 10.10,1002,(2009).
    [8]A. Salim, C. Son and B. Ziaie, Nanotechnology.19,375303,(2008).
    [9]Z. Ding, A. Salim and B. Ziaie, Langmuir.25,9648,(2009).
    [10]Y. K. Fuh, L. C. Lien, Jason S.C, Micro & nano letter.7,376,(2012)
    [11]J. Chang and L. Lin,Transducers,747,(2011)
    [12]K. Gao, X. Hu, C. Dai and T. Yi, Materials Science and Engineering B.131,100,(2006).
    [13]V. Aravindan, P. Vickraman, A. Sivashanmugam, R. Thirunakaran and S. Gopukumar, Appl. Phys. A.97,811,(2009).
    [14]D. Sun, C. Chang, S. Li and L. Lin, Nano Lett.6,839,(2006).
    [15]C. Chang, K.Limkrailassiri and L. Lin, Appl.Phys.Lett.93,123111,(2008).
    [16]C. Chang, V. H. Tran, J. Wang, Y. K .Fuh and L. Lin, Nano Lett.10,726,( 2010).
    [17]S. Priya, Appl. Phys. Lett. 87,184101,(2005).
    [18]S. Roundy and P. Wright, Smart Mater. Struct.13,1131,(2004).
    [19]Y. Hu, Y. Zhang, C. Xu, G. Zhu, and Z. L. Wang, Nano Lett.10,5025,( 2010).
    [20]J. Chang, M. Dommer, C. Chang, L. Lin, Nano Energy.1,356,(2012).
    [21]G. Zhu, R.Yang, S. Wang, and Z. L. Wang, Nano Letter.10,3151,(2010).
    [22]Y. Qin, X. D. Wang and Z. L. Wang, Nature.451,809,(2008).
    [23]R. S. Yang , Y. Qin , L. M. Dai , Z. L. Wang , Nat. Nanotechnol.4,34,(2009).
    [24]S. Xu, Y. Qin, C. Xu, Y. G. Wei, R. Yang, Z. L. Wang, Nat.Nanotechnol.5, 366,(2010).
    [25]Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, and Z. L. Wang, Nano Letter.11,2572, (2011).
    [26]M. Lee, J. Bae, J. Lee, C. S. Lee, S. Hong and Z. L. Wang, Energy Environ. Sci.4, 3359,(2011).
    [27]Z. L. Wang, J. H. Song. Science.312,242,(2006).
    [28]X. Chen, S. Xu, N. Yao and Y. Shi, Nano Lett.10, 2133,(2010).
    [29]M. Lee, C-Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L-J. Chou, and Z. L. Wang, Adv. Mater.24,1759,(2012).
    [30]S. Lee, S-H. Bae, L. Lin, Y. Yang , C. Park, S-W. Kim, S. N. Cha, H. Kim, Y. J. Par , and Z. L. Wang, Adv. Mater., 2012, Online, DOI: 10.(1002).
    [31]A. F. Yu, P. Jiang and Z. L. Wang, Nano Energy.1, 3, 2012.
    [32]S. N. Cha, S. M. Kim, H. J. Kim, J. Y. Ku, J. I. Sohn, Y. J. Park, B. G. Song, M. H. Jung, E. K. Lee, B. L. Choi, J. J. Park, Z. L. Wang, J. M. Kim and K. Kim, Nano Lett.11,5142, (2011).
    [33]X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Science.316,102,(2007).
    [34]Y. F. Hu, C. Xu, Y. Zhang, L. Lin, R. L. Snyder and Z. L. Wang,Adv.Mater. 23,35,(2011).
    [35]R. Zhang, L. Lin, Q. Jing, W. Wu, Y. Zhang, Z. Jiao, L. Yan, Ray P. S. Han and Z. L. Wang, Energy Environ. Sci.5, 8528,(2012).
    [36]C. Sun, J. Shi, D. J. Bayerl, X. Wang, Energy Environ. Sci.4,4508,(2011).
    [37]Z. T. Li and Z. L. Wang, Adv. Mater.23,1,(2011).
    [38]R. Yang, Y. Qin, C. Li, L. Dai, and Z. L. Wang, Appl.Phys.Lett .94,022905,(2009);
    [39]Y. K. Fuh, S. Y. Chen, J. C. Ye , Appl.Phys.Lett2013, Online, DOI: L13-02693

    QR CODE
    :::