跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇宏平
Hung-ping Su
論文名稱: 轉子系統於加速度下之暫態行為分析
Transient analysis of a rotor system during acceleration
指導教授: 王有任
Yu-Zane Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 59
中文關鍵詞: 傳遞矩陣轉子定子摩擦力拉格朗日方程式自然頻率臨界轉速紐馬克法暫態響應
外文關鍵詞: transfer matrix, rotor, stator, rubbing force, Lagrange equation, Nature frequency, Critical speed, Newmark method, Transient response
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 轉子系統的暫態動態分析是其動態研究中極為重要的一部份,因為在失衡現象產生時,各種振動的最大振幅往往發生在系統達到穩定狀態之前的暫態階段。
    本文的model,是以Timoshenko連續樑理論為基礎,軸上可具有數個直徑大小不同的轉盤,且考慮轉子與定子接觸時的摩擦力,接觸的瞬間模擬為彈性碰撞。系統的自由度包括,轉子與轉軸的剛體旋轉、轉軸的扭轉角度、轉子之兩垂直方向的側向位移,以及轉軸的側向位移。本文主要是利用傳遞矩陣法串聯整個系統來做自由振動分析,以能量法原理求取整體系統之動能及位能,然後利用Largrange運動方程式導得系統在有一加速度及離心力情況下之離散化運動方程式。再利用數值方法,可求得其時域下之解。進而可從其軌跡圖(orbit graphics)與響應圖(response graphics)再對其振動和響應情形去分析與探討。


    Transient analysis of a rotor system during acceleration

    摘要……………………i 目錄……………………ii 圖目錄………………iv 符號說明……………viii 第一章 緒論…………………1 1-1. 前言…………………1 1-2. 文獻回顧……………2 1-3. 內容簡介……………4 第二章 傳遞矩陣法分析………5 2-1. 軸段公式推導………5 2-2. 軸段傳遞矩陣………11 2-3. 轉盤的傳遞矩陣………12 2-4. 系統傳遞矩陣………………13 2-5. 固有頻率及模態向量………15 第三章 運動方程式推導……………17 3-1. 摩擦轉子系統受力情形……17 3-2. 能量的推導…………………19 3-3. 運動方程式………………22 第四章 數值模擬結果與討論…………25 4-1. 基本參數設定………………………25 4-2. 無摩擦之轉子系統自由振動…………26 4-3. 摩擦係數對轉子系統的影響…………27 4-4. 偏心位置對轉子系統的影響…………28 4-5. 阻尼比對轉子系統的影響……………28 4-6. 偏心量對轉子系統的影響……………29 第五章 結論與建議………………………30 圖例………………………………………32 參考文獻…………………………………52 附錄A……………………………………54 附錄B……………………………………55 附錄C……………………………………57 附錄D……………………………………58 附錄E……………………………………59

    1. F. F. Ehrich, “Subharmonic Vibrations of Rotors in Bearing Clearences”ASME Paper 66-MD-1,Design Engineering Conference, May 9-12,1966.
    2. F. F. Ehrich, “High Order Subharmonic Response of High Speed Rotors in Bearing Clearence”, ASME Journal of vibration, Acoustic, Stress, and Reliability in Design, Vol. 110, No. 1, January 1988, pp. 9-16.
    3. W. M. Ostachouicz and M. Krawczuk, “Analysis of the Effect of Cracks on the Natural Frequencies of a Cantilever Beam”, Journal of Sound and Vibration, Vol. 150, 1991, pp. 191-201.
    4. C. A. Papadopoulos and A. D. Dimarogonas, “Coupled Vibration of a Cracked Shafts”, ASME, Journal of Vibration and Acoustics, Vol. 114, 1992, pp. 461-467.
    5. D. T. Nguyen, S. T. Noah and C. F. Kettleborough, “Impact Behavior of an Oscillator with Liminting Stops, Part II: Dimensionless Design Parameters”, Journal of Sound and Vibration, 109(2), 1986, pp. 309-325.
    6. Y. S. Choi, S. T. Noah, “Nonlinear Steady-state Response of a Rotor-supported System”, ASME Journal of Vibration, Stress, and Reliability in Design, Vol. 109, No.3, 1987, pp. 255-261.
    7. F. K. Choy and J. Padovan, “Nonlinear Transient Analysis of Rotor-Casing Rub Events”, Journal of Sound and Vibration, Vol. 113, No. 3,1987, pp.529-545.
    8. A. Muszynska, “Rotor-To-Stationary Element Rub-Related Vibration Phenomena in Rotating Machinery”, Literature Survey, The Shock and Vibration Digest, Vol. 21, No. 3, 1989, pp. 3-11.
    9. G. J. Yue, “Vibration Feature Analysis of Rubbing Rotors”, Proceedings of the 1st International Machinery Monitoring and Diagnostics Conference and Exhibit, Las Vegas, Nevada, 1989, pp.599-603.
    10. P. Goldman, A. Muszynska, “Chaotic Behavior of Rotor/Stator Systems With Rubs”, ASME Journal of Engineering for Gas Turbines and Power, Vol, 116, July, 1994, pp.692-701.
    11. D. H. Gonsalves, R. D. Neilson and A. D. S. Barr, “A Study of the Response of a Discontinuously Nonlinear Rotor System”, Nonlinear Dynamics, 7, 1995, pp. 451-470.
    12. F. Chu and Z. Zhang, “Bifurcation and Chaos in a Rub-Impact Jeffcott Rotor System”, Journal of Sound and Vibration, 210(1), 1988, pp. 1-18.
    13. B. O. Al-Bedoor, “Transient Torsional and Lateral Vibrations of Unbalanced Rotors with Rotor-To-Stator Rubbing”, Journal of Sound and Vibration, 229(3), 2000, pp. 627-645.
    14. H. Diken, “Non-Linear Vibration Analysis and Subharmonic Whirl Frequencies of the Jeffcott Rotor Model”, Journal of Sound and Vibration, 243(1), 2001, pp. 117-125.
    15. F.Chu and W.Lu,2001,“Determination of the Rubbin Location in a Multi-disk Rotor System by Means of Dynamic Stiffness Identification”,Journal of Sound and Vibration,Vol.248,pp.235-246.
    16. Klaus-Jurgen Bathe, “Numerical Methods in Finite Element Analysis”, Englewood Cliffs, N. J. ,1976.
    17. Robert G. Loewy and Vincent J. Piarulli, “Dynamic of Rotating Shafts”, N.Y,1969.

    QR CODE
    :::