| 研究生: |
謝正展 Zheng-Zhan Xie |
|---|---|
| 論文名稱: |
低層建築物表面風壓之實驗研究 This study experimentally investigates the pressure distribution on the surface of low-rise buildings with different roof angle. |
| 指導教授: |
朱佳仁
C.R. Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 低層建築物 、高斯分佈 |
| 外文關鍵詞: | Gaussian distribution, Lowirise building |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本研究以風洞實驗的方式來探討邊界層流中低矮建築物表面風壓的分佈情形,實驗條件包括三種不同屋頂角度(15度、20度、30度)的模型。壓力量測使用電子式壓力掃描器可同時量測多個位置的瞬時壓力,由實驗結果可進而計算建築物表面的平均、擾動和最大壓力分佈。實驗結果顯示迎風面牆與背風面牆的平均壓力會隨屋頂角度的增加而增加;迎風面屋頂會由15度的負壓轉變為30度的正壓,20度則同時受正、負壓的作用,此結果接近前人研究所得之臨界角度;背風面屋頂的壓力和擾動壓力隨屋頂的增加而減少。
本研究以卓勇志(2001)所建議之最大壓力的前10%之壓力係數Cp10作為設計風壓係數,Cp10可用平均壓力係數Cp,加上擾動壓力係數Cprms與尖峰因子g10的乘積表示。尖峰因子不受建築物幾何外型及量測位置的影響,g10約為1.23,此結果可有效降低工程設計成本和簡化設計難度。本研究並以統計的方法分析各點所得的擾動風壓,發現迎風面牆和屋頂的擾動風壓會接近高斯機率函數,然而背風面牆和屋頂的擾動風壓會偏離高斯函數。本研究之結果可作為相關研究之參考,並提供相關工程改善時的建議。
Abstract
This study experimentally investigates the pressure distribution on the surface of low-rise buildings with different roof angle (15o,20o and 30o). The experiments were carried out in an atmospheric boundary layer wind tunnel. Instantaneous fluctuating wind pressures were measured by an electronic pressure scanner. Based on the pressure measurement, the distributions of mean, rms Cprms and peak pressure Cpp can be calculated. It was found that the mean pressure coefficient on the front roof surface change from negative to positive while the roof angle change from 15 o to 30o. The critical angle is close to 20o, which is in good agreement with previous studies.
The pressure coefficient, Cp10, could be calculated by the formula, Cp10 = Cp + g10‧Cprms, where the peak factor g10 = 1.23, which is independent of the building shape and position. Experimental results also revealed that the probability of pressure fluctuations on the front surface are closed to the Gaussian distribution. On the other hand, the leeward side was skewed and did not necessary follow Gaussian distribution.
參考文獻
蔡益超、林宗賢 (1984) “建築物所受風力有關規範之模擬”,行政院國家科學委員會,防災科技研究報告73-24號
蔡益超、陳瑞華、項維邦 (1996) “建築物風力規範條文、解說及示範例之研訂”,內政部建築研究所專題研究計畫成果報告, MOIS-850015
陳若華 (1996) “結構振動與流場互至現象之風洞實驗研究”,淡江大學土木工程研究所博士論文
熊萬銀 (1996) “結構震動與流場互制現象之風洞實驗研究”,國立成功大學土木工程研究所碩士論文
朱佳仁 (1997) “國立中央大學大型環境風洞之簡介”,國立中央大學土木工程學系
張瑞楨 (1998) “邊界層流中方柱體尾流之風洞實驗”, 國立中央大學土木工程研究所碩士論文
莊威男 (2000) “超高層建築在紊流邊界層中表面風壓分佈之風洞試驗研究”, 國立海洋大學河海工程研究所碩士論文
卓勇志 (2001) “邊界層中雙棟並排矩形建築之表面風壓量測”, 國立中央大學土木工程研究所碩士論文
Counihan, J. (1973) “Simulation of an adiabatic urban boundary layer in a wind tunnel”, Atmospheric Environment, Vol. 7, pp. 673-689.
Cook, N.J. (1982) “Calibration of the quasi-static and peak-factor approaches to the assessment of wind loads against the method of Cook and Mayne”, J. of Wind Eng. and Ind. Aerodyn., Vol. 10, pp. 315-341.
Cocharn, L.S. and Cermak, J.E. (1992) “Full- and model-scale cladding pressures on the Texas Tech University experimental building”, J. of Wind Eng. and Ind. Aerodyn., Vol. 41-44, pp. 1589-1600.
Durao, D.F.G., Gouveia, P.S.T. and Pereira, J.C.G. (1991) “Velocity characteristics of the flow around a square cross section cylinder placed near a channel wall”, Experiments in Fluids, Vol.11, pp. 341-350.
Ginger, J.D. and Letchford, C.W. (1999) “Net pressures on a low-rise full-scale building”, J. of Wind Eng. and Ind. Aerodyn., Vol. 83,pp. 239-250.
Holmes, J.D. (1981) “Non-Gaussian characteristics of wind pressure fluctuations”, J. of Wind Eng.Ind.Aerodyn, Vol. 7, pp.103-108.
Holmes, J.D. (1985) “Effect of frequency response on peak pressure measurements”, J. of Wind Eng. and Ind. Aerodyn., Vol. 17, pp. 1-9.
Holmes, J.D. (1994) “Wind pressures on tropical housing”, J. of Wind Eng. and Ind. Aerodyn., Vol. 53, pp. 105-123.
Irwin, H.P., Cooper, K.R. and Girard, R. (1979) “Correction of distortion effects caused by tubing systems in measurement s of fluctuating pressures”, J. of Wind Eng. and Ind. Aerodyn., Vol.5, pp. 93-117.
Kawai, H. (1983) “Pressure fluctuations on square prisms-applicability of strip and quasi-steady theories”, J. of Wind Eng. and Ind. Aerodyn., Vol. 13, pp.197-208.
Kind, R.J. (1988) “Worst suctions near edges of flat rooftops with parapets”, J. of Wind Eng. and Ind. Aerodyn., Vol. 31, pp. 251-264.
Kumar, K.S. and Stathopoulos, T. (1998) “Power spectra of wind pressure on low building roofs”, J. of Wind Eng. and Ind. Aerodyn., Vol. 74-6, pp.665-674.
Kumar, K.S. and Stathopoulos, T. (1999) “Synthesis of non-Gaussian wind pressure time-seriws on low building roofs”, Engineering Structures, Vol.21, pp.1086-1100.
Kumar, K.S. and Stathopoulos, T. (2000) “Wind loads on low building roofs : A stochastic perspective”, J. of Struct. Eng., Vol. 126
Letchford, C.W. , Iverson, R.E. and Mcdonald, J.R. (1993) “The application of Quasi-steady theory to full scale measurements on the Texas Tech building ”, J. of Wind Eng. and Ind. Aerodyn., Vol. 48, pp. 111-132.
Okada, H. and Ha, Y.C. (1992) “Comparison of wind tunnel and full-scale pressure measurement tests on the Texas Tech building”, J. of Wind Eng. and Ind. Aerodyn., Vol. 41-44, pp. 1601-1612.
Peterka, J.A. and Cermak, J.E. (1974) “Simulation of atmospheric flows in short wind tunnel test sections”, Report for Center of Building Technology, CER73-74JAP-JEC32, Fluid Dynamics anf Diffusion Laboratory, Colorado State University, Fort Collins, Colo.
Rae, W.H.J., Barlow, J.B. and Pope, A. (1999) “Low-speed wind tunnel testing”, Johns Wiley and Sons, Inc.
Stathopoulos, T. , Davenport, A.G. and Surry, D. (1978) “The assessment of effective wind loads acting on flat roofs”, 3rd Colloq. on Industrial Aerodynamics, Vol. 14-16.
Stathopoulos, T. (1980) “PDF of wind pressures on low-rise building”, J. of Struct. Div., ASCE Vol. 106, pp. 973-990.
Stathopoulos, T and Mohammadian, A.R. (1986) “Wind loads on low buildings with mono-sloped roofs”, J. of Wind Eng. and Ind. Aerodyn., Vol. 23, pp. 81-97.
Stathopoulos, T. and Satthoff, P. (1991) “Wind pressure on roofs of various geometries”, J. of Wind Eng. and Ind. Aerodyn., Vol. 38, pp. 273-284.
Seong, S.H. (1993) “Digital synthesis of wind pressure on building surfaces”, PhD thesis, Colorado State University, Fort Collins, Colo.
Suzuki, M., Kondo, K. , Sanada, S. and Minamide, K. (1993) “Prediction of the wind induced response of multi-story building-using simultaneous multi-channel measuring control system”, J. of Wind Eng. and Ind. Aerodyn., Vol. 50, pp. 341-350.
Surry, D. and Lin, J.X. (1995) “The effect of surroundings and roof corner geometric modifications on roof pressures on low-rise buildings”, J. of Wind Eng. and Ind. Aerodyn., Vol. 58, pp. 113-138.
Simiu, E. and Scanlan, R.H. (1996) “Wind effect on structures”, 3rd edition, Johns Wiley and Sons, Inc.
Sitheeq, M., Iyengar, A. and Farell C. (1997) “Effect of turbulence and its scales on pressure field on the surface of a three-dimensional square prism”, J. of Wind Eng. and Ind. Aerodyn., Vol. 69-71, pp. 461-471.
Uemastu, Y. and Isyumov, N. (1998) “Peak gust pressure acting on the roof and wall edges a low-rise building”, J. of Wind Eng. and Ind. Aerodyn., Vol. 77-78, pp.217-231.
Uemastu, Y. and Isyumov, N. (1999) “Wind pressure acting on low-rise buildings”, J. of Wind Eng. and Ind. Aerodyn., Vol. 82, pp. 1-25.
Vanmarcke, E. (1983) “Random fields : Analysis and synthesis”, MIT Press, Cambridge, Mass.