| 研究生: |
蔡政諭 Zheng-yu Cai |
|---|---|
| 論文名稱: |
大面積矩形光型之投射光學設計 Projection optical design of rectangular light pattern for large area |
| 指導教授: |
孫慶成
Ching-cherng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 矩形光型. 、均勻度 、發光二極體場館燈 、自由曲面 |
| 外文關鍵詞: | uniform., rectangular light pattern, free form, LED stadium lighting |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們選用高功率白光LED為光源,設計一在俯角15˚時,投射出矩形光型的燈具,此燈具以兩組對稱擺放時,能夠在目標面上達到高均勻度。一般架設於球場四周的燈具,為了將光投射到更廣的範圍,會將燈具傾斜一角度,而造成原本矩形之光型會因旋轉而使光型變為一個梯形的形狀。在本論文研究中之一重大目的,是將此倒梯形之光型修正回原本之矩形光型以達成上述之照明效果,此外我們也由實驗驗證模擬之精準度。根據本研究中之設計結果,我們將多個燈具陣列式配置,探討在不同的場館照明下空間中的照度分布以及光學有效利用率,如:羽球場、排球場以及游泳池等,皆能在各個場地中達到高均勻度。最後,探討其燈具之公差。
In this paper, we design a lamp with high uniformity and rectangular light pattern based on power-chip white LEDs. Furthermore, the distortion of pattern caused by the depression angle of the lamp is compensated in our design. According to the result of this design, we can consider the array of the lamps and discussing the illuminance distribution in different stadium lighting, such as: badminton court, volleyball court, and swimming pool. Finally, we will analyze the tolerance of this lamp.
參考文獻
[1] LEDinside, http://www.ledinside.com.tw/news/20120619-21642.html.
[2] 金憶達股份有限公司, http://www.cyd.com.tw/?led-white-octanglelight.
[3] 經濟部能源局, http://www.moeaboe.gov.tw.
[4] 大陸白熾燈淘汰計畫將定案, http://www.digitimes.com.tw/tw/rpt/rpt_show.asp?CnlID=3 &v=20110901-469&ct=1.
[5] LEDinside, http://www.ledinside.com.tw/news/20120627-21762.html.
[6] H. J. Round, “A Note On Carborundum,” Electron World 19, 309 (1907).
[7] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Spinger, Berlin, 1997).
[8] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[9] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[10] Stelur et al., “Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices,” United States Patent, US 6685852 B2 (2004).
[11] T.F. McNulty et al., “UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating The Same,” United States Patent, Us 6686676 B2 (2004).
[12] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE. 4445, 148-155 (2001).
[13]Seoul miconductor, http://www.acrich.com/en/prCenter/news/view.asp?seq=116.
[14] S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797-L799 (1995).
[15] S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32, L8-L11 (1993).
[16] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of P-Type GaN films,” Jpn. J. Appl. Phys. 31, 1258-1266 (1992).
[17] S. Chichibu, T. Azuhata, T. Sota, H. Amano, and I. Akasaki, “Optical properties of tensile-strained wurtzite GaN epitaxial layers,” Appl. Phys. Lett. 70, 2085 (1997).
[18] S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Continuous‐wave operation of InGaN multi‐quantum‐well‐structure laser diodes at 233 K,” Appl. Phys. Lett. 69, 3034 (1996).
[19] D. B. Thompson, A. Murai, M. Iza, S. Brinkley, S. P. DenBaars, U. K. Mishra, and S. Nakamura, “Hexagonal truncated pyramidal light emitting diodes through wafer bonding of ZnO to GaN, laser lift-off, and photo chemical etching,” Jpn. J. Appl. Phys. 47, 3447-3449 (2008).
[20] I. Schnitzer, E. Yablonovitch, C. Carneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light emitting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993).
[21] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855-857 (2004).
[22] S. C. Hsu, C. Y. Lee, J. M. Hwang, J. Y. Su, D. S. Wuu, and R. H. Horng, “Enhanced light output in roughened GaN-based light-emitting diodes using electrodeless photoelectrochemical etching,” IEEE Photo. Techno.Lett. 18, 2472-2474 (2006).
[23] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431-L1433 (2002).
[24] R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for ultra high brightness LED Package,” Proc. SPIE. 6198, 1-4 (2006).
[25] Duclos et al., “Phosphor coating with self-adjusting distance from LED chip,” United States Patent, US 6635363 B1 ( 2003).
[26] R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color convertingfor ultra high brightness LED package,” Proc. SPIE. 6198, 61980B:1-12 (2006).
[27] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. 86, 243505:1-3 (2005).
[28] PHILIPS, http://www.ecat.lighting.philips.com.tw/l/sports-and-area/area/optivision-mvp5
07-c/910401647780_eu/.
[29] V. N. Mahajan, Optical imaging and aberrations partI Ray Geometrical optics (SPIE, Bellingham, Washington, 1998).
[30] E. Hecht, Optics (Addison Wesley, San Francisco, 2002).
[31] W. Welford, High Collection Nonimaging Optics (Academic Press, San Diego, California, 1989).
[32] R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Academic Press, San Diego, California, 2005).
[33] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, New Jersey, 2007).
[34] R. W. Boyd, Radiometry and the Detection of Optical Radiation (John Wiley, New York, 1983).
[35] J. M. Palmer and B. G. Grant, The Art of Radiometry (SPIE PRESS, Washington, 2010).
[36]馮世典,德規LED自行車前燈光學設計與驗證,國立中央大學光電所碩士論文,中華民國一百年。
[37] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[38] W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15(12), 7572–7577 (2007).
[39] D. K. Cheng, Field and Wave Electromagnetics (Addison Wesley, San Francisco, 1989).
[40] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic Press, San Diego, California, 2001).
[41] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
[42] CREE, http://www.cree.com/.
[43] DIALux , http://www.dial.de/DIAL/en/.
[44] CNS 12112 Z1044,照度標準,76.9.17。
[45] T. Chien, J. Ho, F. Yu, W. Lai, C. C. Chen, and S. C. Tsai, “Multi-functional LED Module for Street Lighting,” Proc. APLSW. 4, 47-48 (2011).