| 研究生: |
尤世雄 Se-Siong Yu |
|---|---|
| 論文名稱: |
CFSBR水質推估公式之發展與建立 Development of Water Quality Evalute Formulas for CFSBR |
| 指導教授: |
廖述良
Shu-Liang Liaw |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 連續流批次式生物處理系統 、自動監測控制 、類神經網路 |
| 外文關鍵詞: | Automation real-time control, Continuous-Flow Sequencing Batch Reactor(CFSBR), Neural network |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
連續流批次式生物處理系統(Continuous-Flow Sequencing Batch Reactor, CFSBR)在自動監控系統的發展上,主要是利用監測pH及ORP的折點來決定相位的改變,已可有效地提升去除效率、放流水質的穩定性及降低成本,但是由於部分的水質項目,如COD、氨氮、硝酸氮、亞硝酸氮及正磷酸等尚無有效的連續自動監測技術,致厭氧相無法準確掌握有機氮的脫氨作用與微生物釋磷作用等操控需求,而影響後續好氧相的硝化與攝磷的作用,造成去除率不佳與放流水質不穩定等結果。
雖然現有的線上即時水質水量自動監測通常無法作到全面的監測,但對一個「半開放」的CFSBR而言,其水質特性相互之間存在一定的關係,是故,本研究利用類神經網路來建立水質推估公式,以利用即時的監測項目資料來同步推估未監測的水質項目資料。爲了能有效地掌握水質的變化趨勢,本研究嘗試於輸入變數中加入初始値以及反應狀態變數。由研究結果指出,於輸入變數加入初始值後的類神經網路模式,確實能更有效地推估磷酸鹽、亞硝酸氮、硝酸氮與氨氮的變化趨勢。
The continuous-flow sequencing batch reactor (CFSBR) mainly utilizes and monitors the bend of pH and ORP to determine the change of the phase in the development of the real-time control system, the stability of water quality and reduction of cost can already improve and get rid of efficiency. However, some water-quality characteristics, for instance COD, NH4+-N, NO2--N, NO3--N and PO43--P, etc. do not have effectively automatic monitoring technology yet. It makes the anaerobic phase unable to grasp an ammonification and bio-phosphate release, and influence nitrification and bio-phosphate up-take in the follow-up aerobic phase. Thus it leads the bad removal rate and the unstable effluent quality.
Though the existing on-line sensors are usually unable to accomplish overall monitoring, these variables are determined with a significant time delay. However, CFSBR is a half-opening system; its water-quality characteristic has certain relation with each other. In this study, the water quality evaluate formulas was developed using the network approach, which can simultaneously utilize on-line information to evaluate water quality. In monitoring and controlling CFSBR, the information of nutrient dynamics is very important. In this reason, this study tries to join the initial value and the state variable into input data. And the results show this method can evaluate NH4+-N, NO2--N, NO3--N and PO43--P concentrations and trends well.
1.Al-Ghusian I. A., Huang J. Hao O. J. and Lim B. S., “Using pH as a Real-time Control Parameter for Wastewater Treatment and Sludge Digestion Process, ” Wat. Sci. Tech., 30, 4, 159-168. (1994).
2.Burbank N. P. Jr., “ORP-A Tool for Process Controll,” Process Isl. An. Conf. On Avt. Sludge Conf. Arthn Tech. Wisc., 65-79. (1981).
3.Charpentier J., Godart H., Martin G. and Mogno Y., “Oxidation-Reduction Potential as a Way to Optimize Aeration and C, N and P Removal: Experimental Basis and Various Full-Scale Examples,” Wat. Sci. Tech., Brighton, 21, 1209-1223. (1989).
4.Chuang S.H., Ouyang C.F., Yuang H.C. and You S.J., “Phosphorus and polyhydroxyalkanoates variation in a combined process with activated sludge and bilfilm,” Wat. Sci. Tech. 37(4-5), 593-597(1997).
5.Dae Sung Lee, Jong Moon Park, “Neural network modeling for on-line estimation of nutrient dynamics in a sequentially-operated batch reactor,” Journal of Biotechnology, 75, 229-239. (1999).
6.Dong-Jin Choi and Heekyung Park, “A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process,” Pergamon, Wat. Res. Vol. 35, NO. 16, 3959-3967(2001).
7.Eckenfelder W. W. and Hood J. W., “The Application of Potential to Biological Waste Treatment Process Control,” Proceeding of 6th Purdue Industrial Waste Conference, Feb. 21-23, Purdue University, West Lafayette, Indiana, 221-238. (1951).
8.Groeneweg J., Sellner B. and Tappe W., “Ammonia Oxidation in Nitrosomonas at NH3 Concentration near Km: Effects of pH and Temperature,” Wat. Res., 29, 12, 2561-2566. (1994).
9.Hood J. W., “Measurement and Control of Sewage Treatment Process Efficiency by Oxidation-Reduction Potential,” Sewage Works Journal, 22, 4, 640-653. (1948).
10.Koch F. A and Oldham W. K., “Oxidation-Reduction Potential – A Tool for Monitoring Control and Optimization of Biological Nutrient Removal System,” Wat. Sci. Tech., 17, Peris, 259-281.(1985)
11.Lie E. and Welander T., “Influence of Dissovled Oxygen and Oxidation-Reduction Potential on the Denitrification Rate of Activated Sludge,” Wat. Sci. Tech., 36, 6, 71-74. (1994).
12.Menardiere P. H., Roland D. D. and William H. P. “Transformation of Selenium as Affected by Sediment Oxidation-Reduction Potential and pH,” Env. Sci. Tech., 24, 1, 91-96. (1991).
13.Painter H., “A Review of Literature on Inorganic Nitrogen Metabolism in Micro-Organisms,” Wat. Res., 4(6): 393.(1970).
14.Peddie C. C., Mavinic D. S. and Jenkins C. J. “Use of ORP for Monitoring and Control of Aerobic Sludge Digestion,” J. Envi. Eng., 116, 3, 461-471. (1990).
15.Rittman, B.E. and McCarty, P.L., “Environmental Biotechnology: Principles and Applications,” McGraw Hill. (2000).
16.Sasaki K., Yamamoto Y., Hatsumeta K. T. S. and Tatewaki M., “Simultaneous Removal of Nitrogen and Phosphorus in Intermittently Aerated 2-Tank Activated Sludge Process Using DO and ORP-Bending Point Control,” Wat. Sci. Tech., 28, 11-12, 513-521. (1993).
17.Smolders G. J. F., Meiji v. d. j, “Loodrecht v. M. C. M. and Heijnen J. J. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process, ” Biotechnol. Bioeng., 44, 837-848. (1994).
18.Yu, R. F., S. L. Liaw, C. N. Chang, H. J. Lu and W. Y. Cheng, “The Monitoring and Control Using On-line ORP on Continuos-flow Sludge Batch Reactor,” Water Science and Technology, Vol. 35, No. 1, pp. 57-66 (1997).
19.Yu, R. F., S. L. Liaw, C. N. Chang and W. Y. Cheng, “Enhancing the Performance of Nitrogen Removal in Continuous-flow SBR system Using Real-time Control,” Journal of the Chinese Institute of Environmental Engineering Vol. 7, No. 4, pp. 319-328 (1997).
20.Yu, R. F, S. L. Liaw, C. N. Chang, and W. Y. Cheng, “Applying Real-time Control to Enhance the Performance of Nitrogen Removal in Continuous-flow SBR System,” Water Science and Technology, Vol. 38, No. 3, pp. 271-280 (1998).
21.Yu, R. F, S. L. Liaw, C. N. Chang, and W. Y. Chen, “Performance Enhancement of a SBR Applying Real-time Control,” J. of Environmental Engineering, ASCE, Vol. 126, No. 10, pp. 943-948 (2000).
22.Wareham, D. G., Mavinic D. S. and Kenneth J. H., “Sludge Digestion Using ORP-Regulated Aerobic-Anoxic Cycles,” Wat. Res., 28, 2, 373-384. (1993).
23.Watanabe S., Baba K. and Nogita S., “Basic Studies on an ORP/External Carbon Source Control System for the Biological Denitrification Process. Instrumentation and Control Of Water and Wastewater Treatment and Transport System,” 4th IAWPRC Workshop, 27 April- 4 May, 641. (1985).
24.呂學智、廖述良、余瑞芳、陳萬原,“單槽連續流回分式活性污泥系統自動化監控之初步研究-以ORP、pH、DO為監控參數之探討”,第二十屆廢水處理技術研討會論文集,台北(1995)。
25.余瑞芳、陳萬原、廖述良、張鎮南,“類神經網路於連續流SBR廢水處理系統即時控制之應用”,第二十一屆廢水處理技術研討會論文集,台中(1996)。
26.阮春騰、歐陽嶠暉,「改良式單槽連續進流間歇曝氣系統處理特性之初步研究」,第十七屆廢水處理技術研討會論文集,中壢(1992)。
27.卓伯全、張鎮南,「以連續批分式接觸材程序分解含高氮有機物之研究」,第二十一屆廢水處理技術研討會論文集,176-183 ,台北(1996)。
28.卓伯全、廖述良、余瑞芳、楊素禎,「應用類神經網路推估硝化及脫硝反應終點之可行性研究」,第二屆環境系統分析研討會,台南(1999)。
29.卓伯全、廖述良、邱柏仁、余瑞芳,“應用類神經網路輔助建立動態連續進流循序批分式活性污泥系統之即時控制策略”,第二十五屆廢水處理技術研討會論文集,雲林 (2000)。
30.陳萬原、廖述良、余瑞芳,“單槽連續流SBR廢水處理系統即時自動控制之研究”,第二十一屆廢水處理技術研討會論文集”,台中(1996)。
31.許添財,“連續流回分式活性污泥系統好氧相曝氣控制策略之研究-線上即時量測溶氧轉換率與需氧量方法之建立”,國立中央大學環境工程研究所碩士論文,桃園(1995)。
32.萬騰州、陳清暉、張以森,“類分子神經系統應用於廢水處理廠放流水品質預測之研究”,第十二屆環境規劃與管理研討會論文集,中壢(1999)。
33.楊素禎、廖述良、余瑞芳、卓伯全、黃香賓珽, “單槽連續流回分式活性污泥系統處理動態進流污水自動控制之研究”,第二十四屆廢水處理技術研討會論文集,中壢(1999)。
34.謝汶興、廖述良、呂學智、余瑞芳,「單槽連續流回分式活性污泥系統操作特性之初探」,第十九屆廢水處理技術研討會論文集,台南(1994)。