| 研究生: |
王信偉 Hsin-Wei Wang |
|---|---|
| 論文名稱: |
混凝土材料用於用過核子燃料乾式中期貯存設施之穩定性研究 |
| 指導教授: |
黃偉慶
Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 高溫 、中期貯存 、混凝土屏蔽 、劣化 |
| 外文關鍵詞: | interim storage facility, concrete shielding, spent fuel, degradation |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
國內現有核能電廠用過核燃料池的空間設計,並不足以完全貯放營運期間所產生的用過核燃料。台電公司規劃將用過核子燃料置放於混凝土護箱或混凝土模組中,進行約50年左右的用過核子燃料中期貯存計畫。由於中期貯存設施主體是由混凝土材料所構成,且考慮到混凝土材料需長時間承受內部用過核燃料所散發的衰變熱,及台灣地區特殊的環境氣候條件下,對混凝土材料可能受損或劣化有必要加以評估分析。
本文主要針對中期貯存設施外圍所構成之混凝土材料,模擬長期承受內部用過核子燃料持續散發之衰變熱及外在環境因子交互作用下,評估混凝土材料可能的劣化機制,試驗結果顯示(1)250 ℃受熱範圍內,仍可發揮混凝土本身的抗壓強度值,而彈性模數及劈裂強度則隨溫度愈高折損愈多,上述力學性質皆不隨受熱歷時增加而再有顯著劣化現象;(2)混凝土受熱溫度愈高收縮量愈多,但不隨歷時增加而再有明顯收縮;(3)氯離子擴散試驗結果顯示,受熱於250 ℃之混凝土,其抵抗氯離子滲透能力較差;(4)受熱過後之混凝土中性化反應並不明顯,但在常溫環境下,添加卜作嵐材料之混凝土中性化深度較深;(5)混凝土中若添加卜作嵐材料、強塑劑及V型水泥時,能增進混凝土抵抗硫酸鹽侵蝕能力;(6)經微觀分析試驗結果顯示,混凝土受模擬溫度及歷時條件下,水泥漿體之微觀結構及內部水化產物型態並無顯著改變或劣化現象;(7)綜合各試驗結果顯示,添加20 %爐石粉之混凝土,能增進混凝土抵抗高溫作用能力。
The design capacity of the spent fuel pool for the first and second nuclear power plant was not enough to store spent fuel. Taipower company plans to build interim storage facilities in the next few years. The interim storage facility relies much on the concrete structure as a shielding for spent fuel casks. Due to the long term decay heat and severe environments to be encountered, high quality concrete is considered as a major safety contributor to the interim storage facility. To evaluate the degradation effects of concrete applicable to interim storage facilities for long-term safety, several scenarios were considered in this research, including decay heat, salt attack, and carbonation reaction.
Experimental results obtained from concrete with varying admixtures indicate that: (1) under elevated temperature, the compressive strength of concrete remains unchanged, and the elastic modulus and splitting strength of concrete decreases slightly; (2) the shrinkage of concrete increases with rising temperature; (3) the chloride diffusivity of concrete specimens negligible change at temperature level below 150 ℃, but increases significantly at 250 ℃; (4) carbonation reaction of heated concrete is insignificant; (5) concrete admixed with pozzolanic materials or superplasticizer exhibits improved resistance to sulfate attack; (6) microstructure observations on the morphology of hydration products indicated no noticeable changes upon heating; (7) concrete made with 20% blast furnace slag was found to perform well in terms of strength and durability aspects.
危時秀,「普通混凝土熱傳導性質之研究」,碩士論文,中原大學土木工程學系,中壢 (2003)。
沈進發,「混凝土品質控制」 (1998)。
沈得縣,沈進發,「添加化學摻料對混凝土耐火性能影響之探討」,計畫研究報告,內政部建築研究所 (1994)。
沈得縣,郭明峰,「含飛灰普通混凝土高溫性質與行為之研究」,第四屆結構工程研討會 (1998)。
吳振成,「混凝土用添加劑之研究」,計畫研究報告,交通部台灣區國道新建工程局 (1995)。
吳智堂,「不同細度之飛灰及爐石配比對混凝土強度影響之研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1998)。
放射性物料管理處,「核燃料與用過核燃料基礎課程」,用過核燃料中期貯存訓練教材,板橋 (1991)。
放射性物料管理局網站,http://fcma.aec.gov.tw (2004)。
林炳炎,「混凝土的耐火性及熱性質」,營建世界,第62-72頁 (1986)。
紀茂傑,「混凝土耐久性影響因素及評估方法之研究」,博士論文,國立台灣海洋大學河海工程學系,基隆 (2002)。
郭文田,「添加強塑劑對水泥材料水化及其早期行為之影響」,博士論文,國立中央大學土木工程研究所,中壢 (2000)。
黃兆龍,「混凝土性質及行為」,詹氏書局 (1999)。
陳建中,「用過核燃料中期貯存設施之結構安全獨立驗算模式」,計畫研究報告,核能研究所 (2002)。
蔡明谷、黃兆龍,「水密性、耐火性、抗蝕性、耐疲勞與其他耐火性」,營建簡訊,第98期,第44-49頁 (1990)。
薛蒼林,「輸氣混凝土中性化行為之探討」,碩士論文,國立成功大學土木工程研究所,台南 (2002)。
Andrade, C. (1993), “Calculation of chloride coefficients in concrete from ionic migration measurements,” Cement and Concrete Research, Vol. 23, pp. 724-742.
Ahmed, A. E., AL-Shaikh, A. H., and Arafat, T. I. (1992), “Residual compressive and bond strength of limestone aggregate concrete subjected to elevated temperatures,” Magazine of Concrete Research, Vol. 44, pp. 117-125.
Chan, Y. N., Luo, X., and Sun, W. (2000), “ Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800 ℃,” Cement and Concrete Research, Vol. 30, pp.247-251.
Chan, Y. N., Peng, G.. F., and Anson, M. (1999), “ Residual strength and structure of high-strength concrete and normal strength concrete after exposure to high temperature,” Cement and Concrete Composites, Vol. 21, pp.23-27.
Cülfik, M. S., and Őzturan, T. (2002), ”Effect of elevated temperatures on the residual mechanical properties of high-performance mortar,” Cement and Concrete Research, Vol. 32, pp. 809-816.
Castillo, C., and Durrani, A. J. (1990), ”Effect of transient high temperature on high-strength concrete,” ACI Materials Journal, Vol. 87, No. 1, pp. 47-53.
Dias, W. P. S., Khoury, G. A., and Sullivan, P. J. E. (1990), “Mechanical properties of hardened cement paste exposed to temperature up to 700 ℃,” ACI Materials Journal, Vol. 87, No. 2, pp. 160-166.
Emanuelson, A., Henderson, E., and Hansen, S. (1996), “Hydration of ferrite Ca2AlFeO5 in the presence of sulphates and bases,” Cement and Concrete Research, Vol. 26, No. 11, pp. 1689-1694.
Farage, M. C. R., Sercombe, J., Gallé, C. (2003), “Rehydration and microstructure of cement paste after heating at temperatures up to 300 ℃,” Cement and Concrete Research, Vol. 33, pp. 1047-1056.
Felicetti, R., and Gambarova, P. G. (1996), “Effects of high temperature on the residual compressive strength of high-strength siliceous concretes,” ACI Materials Journal, Vol. 95, No. 4, pp. 395-406.
Gallé, C., and Sercombe, J. (2001), ”Permeability and pore structure evolution of silico-calcareous and hematite high-strength concretes submitted to high temperatures,” Materials Structures, Vol. 34, pp. 619-628.
Hoodoo, S. K., Agrawal, S. and Agrawl, S. K. (2002), “Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures,” Cement and Concrete Research, Vol. 32, pp. 1009-1018.
Jazairi, B. E. and Illston, J. M. (1980), “The hydration of cement paste using the semi-isothermal method of derivative thermogravimetry,” Cement and Concrete Research, Vol. 10, pp.361-366.
Kodur, V. K. R., and Sultan, M. A. (2003), “ Effect of temperature on thermal properties of high-strength concrete,” ASCE, Journal of Materials in Civil Engineering, Vol. 15, No.2, pp. 101-107.
Khoury, G. A. (1992), “Compressive strength of concrete at high temperatures: a reassessment,” Magazine of Concrete Research, Vol. 44, No. 161, pp. 291-309.
Khan, M. I. (2002), “Factors affecting the thermal properties of concrete and applicability of its prediction models,” Cement and Concrete Research, Vol. 37, pp. 607-614.
Kim, K. H., Jeon, S. E., Kim, J. K., and Yang, S. (2003), “An experimental study on thermal conductivity of concrete,” Cement and Concrete Research, Vol. 33, pp. 363-371.
Lin, W., Lin, T. D., and Powers-Couche, L. J. (1996), “Microstructures of fire-damaged concrete,” ACI Materials Journal, Vol. 93, No. 3, pp. 199-205.
Li, J. Y., and Tian, P. (1997), “Effect of slag and silica fume on mechanical properties of high strength concrete,” Cement and Concrete Research Vol. 27, No. 6, pp. 833-837.
Mehta, P.K. (1986), Concrete Structure Properties and Materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
Mohamedbhai, G. T. G. (1986), “Effect of exposure time and rates of heating and cooling on residual strength of heated concrete,” Magazine of Concrete Research, Vol. 38, No. 136, pp. 151-158.
Noumowe, A. N., Clastres, P., Debicki, G., and Costaz, J. L. (1996), “Transient heating effect on high strength concrete,” Nuclear Engineering and Design, Vol. 166, pp.99-108.
Poon, C. S., Azhar, S., Anson, M., and Wong, Y. L. (2001), “ Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures,” Cement and Concrete Research, Vol. 31, pp.1291-1300.
Phan, L. T., and Carino, N. J. (1998), ”Review of mechanical properties of HSC at elevated temperature,” ASCE, Journal of Materials in Civil Engineering, Vol. 10, No. 1, pp. 58-64.
Piasta, J., Sawicz, Z., and Rudzinski, L. (1984), ”Changes in the structure of hardened paste due to high temperature,” Materials Structures, Vol. 17, No. 100, pp.291-296.
Sarshar, R., and Khoury, G.. A. (1993), “Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures,” Magazine of Concrete Research, Vol. 45, No. 162, pp. 51-61.
Saad, M., Abo-El-Enein, S. A., Hanna, G. B., and Kotkata, M. F. (1996), ”Effect of temperature on physical and mechanical properties of concrete containing silica fume,” Cement and Concrete Research, Vol. 26, No.5, pp. 669-675.
Saad, M., Abo-El-Enein, S. A., Hanna, G. B., and Kotkata, M. F. (1996), ”Effect of silica fume on the phase composition and microstructure of thermally treated concrete,” Cement and Concrete Research, Vol. 26, No. 10, pp. 1479-1484.
Vydry, V., Vodák, F., Kapičková, O., and Hošková, Š. (2001), “Effect of temperature on porosity of concrete for nuclear-safety structures,” Cement and Concrete Research, Vol 31, pp.1023-1026.
Young, J. F. and Mindess, S. (1981), Concrete, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.