| 研究生: |
鍾仕豪 Ser-how Chong |
|---|---|
| 論文名稱: |
超輕鎂鋰合金的拉伸與疲勞特性研究 Tensile and Fatigue Properties Study of Superlight Mg-Li Alloys |
| 指導教授: |
李雄
Shyong Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 鎂鋰合金 、固溶強化 、抗拉強度 、疲勞限 |
| 外文關鍵詞: | Mg-Li Alloys, Solid Solution Hardening, Ultimate Strength, Fatigue Limit |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為探討新型超輕鎂鋰合金之拉伸與疲勞特性。選用具有低密度及室溫良好成型性之Mg-Li系列合金為研究對象,分別為LAZ1110和添加Be、Sc元素之LAZ1110+Be+Sc兩種合金。但由於此系列合金缺乏足夠的機械強度,故利用固溶處理來強化來提昇其機械強度。
顯微組織方面,兩種合金皆呈現α+β的雙相組織結構,並在晶粒內部有“費德曼組織”的出現;添加了Be、Sc元素的鎂鋰合金,其晶粒大小則略低於原材。經350℃/1小時固溶處理後,兩種材料均呈現單一β相組織,並且晶粒明顯粗大化。
機械性質方面,LAZ1110的抗拉強度為 150MPa,添加Be、Sc元素後由於細晶強化的效果,強度略為提昇至157MPa。固溶後兩種材料的抗拉強度皆提昇了將近100MPa,強化效果顯著。LAZ1110和LAZ1110+Be+Sc的應變硬化程度相差不大,然而固溶強化後卻有明顯的提昇,增加了材料抑制頸縮變形的能力。
LAZ1110、LAZ1110+Be+Sc的疲勞限分別為35MPa和43MPa,並有觀察到α相顆粒有延緩裂縫成長的效果。固溶強化後由於材料內部差排移動受阻的影響,使得兩種材料的疲勞限明顯增加。
This research focuses on the tensile and fatigue properties of super-light Mg-Li Alloy. LAZ1110 with low-density and good room temperature forming was chosen as the subject, and Be, Sc were added to form LAZ1110+Be+Sc. However, this kind of alloy lacked strength, so it was strengthened by using solid solution hardening.
As for the microscopic, both alloys present the two-phased structure of α+β, and “Widmansta ̈tten Structure” also appeared. The addition of Be, Sc reduced the grain size of Mg-Li alloys. After solid solution hardening, both alloys present single β phase, whose grain size coarsening apparently.
The ultimate strength of LAZ1110 is 150MPa, and after Be, Sc addition its strength increased to 157MPa due to effect of fine grain size strengthening. After solid solution hardening, both alloys’ ultimate strength increased by nearly 100MPa. The ability of strain hardening of LAZ1110 is close to that of LAZ1110+Be+Sc, but the each ability of strain hardening increases apparently after heat-solute treatment.
The fatigue limit of LAZ1110 is 35MPa, and that of LAZ1110+Be+Sc is 43MPa, but α phase was observed to delay the crack propagation. After solid solution hardening, due to dislocation strain field interaction, the fatigue limit of two alloys apparently increased.
【1】楊榮川, 「鎂及其合金」 , 機械工程手冊3-金屬材料篇, 6-
33~42頁,2002年1月
【2】I.J. Polmear, Mater. Sci. Technol. 10(1994) 1-16.
【3】F. Czewinski, A. Zielinska-Lipiec, P.J. Oinet,
J.Overbecke,ActaMater., Vol 49, pp.1225-1235, 2001
【4】K. Saitoh, Mater. Jpn., 38, 321-324, 1999
【5】邱垂泓, 「鎂板的應用及其製造方法」, 工業材料雜誌,
190期, 2002年10月
【6】張津、章宗和, 「鎂合金及應用」, 化學工業出版社, 2006
【7】蔡幸甫, “鎂合金成型產業現況及發展趨勢”, 工業材料
雜誌, 2004年7月,211期
【8】蕭瑞聖, 「鎂合金應用於汽車的實例」, 產業評析-ITIS智
網,http://www.itis.org.tw
【9】H. Takuda, T. Yoshii and N. Hatta, Journal of
Materials Processing Technology 89-90, 135-140, 1999
【10】H. Takuda, H. Fujimoto and N. Hatta, Journal of
Materials Processing Technology 80-81 , pp.513-516,
1998
【11】王建義,「超輕量鎂合金開發」, 工業材料雜誌, 184期,
132-136頁,民國 91年4月
【12】H. Takuda, H. Matsusaka, S. Kikuchi, K. Kubota,
J.Mater.Sci. 378, pp. 51, 2002
【13】Z. Drozd, Z. Trojanova′, S. Ku′ dela, J. Alloy
Comp. 37(2004) 192
【14】Fuchs, H. O.,“Metal Fatigue in Engineering”,
John-Wiley & Sons Inc. , 1980
【15】曾春華, 鄒十踐,「疲勞分析方法及應用」, 中共國防工業
出版社, 北京, 1991
【16】Ohchida, H.,“Analysis of Service Failures of
Hitachi Product (1970-1975)”, Hitachi Company
Report, July 1979
【17】Duga, J. J. et. al.,“The Economic Effects of
Fracture in the United States”Part 2, A Report to
NBS by Battllle Columbus Laboratories, March, 1983
【18】ASM Speciality Handbook, ASM International, 1999
【19】Norsk Hydro Databank, Norsk Hydro Research Center
Porsgrunn, 1996.
【20】Cahn RW, Haasen P, Kramer EJ(ed). Material Science
and Technology A Comprehensive TREATMENT in Matucha
KH(ed), Weinheim, VCH, 1996
【21】Jona F, Marcus P M. J Phys Condens Matter, Vol 15,
pp.7727,2003
【22】R. W. Cahn, P. Haasen and E. J. Kramer, Materials
Science and Technology, Vol. 8, pp.131, 1996
【23】莊錦川, 「具備輕量化潛力的擠型鎂合金」, 鎂合金產業
專欄, 134頁,2001 年12 月
【24】郭子強, 「熱處理對AZ91D 鎂合金顯微組織與電化學性質影
響之研究」, 國立成功大學, 碩士論文, 民國93 年
【25】王建義, 「鎂合金板材之壓型(Press Forming)加工技
術」,鎂合金產業專欄, 133頁, 2001 年2 月
【26】T. B. Massalski, “Binary Alloy Phase Diagrams”,
2nd ed., ASM INTERNATIONAL, Materials Park, OH,
pp.1487. , 1990
【27】張永耀,「金屬熔銲學」, 徐氏基金會, 台北,第134-170
頁, 1976
【28】蔡幸甫,「鎂合金產業技術及市場發展趨勢專題調查」, 工
院產業經濟與資訊服務中心科技專案成果, 2001
【29】C. H. Caceres, C. J. Davidson, J. R. Griffiths and
C. L.Newton“Effects of solidification rate and
ageing on the microstructure and mechanical
properties of AZ91 alloy”, Materials Science and
Engineering, A325, pp.344-355. , 2002
【30】C. Shaw and H. Jones,“The contributions of different
Alloying additions to hardening in rapidly solidified
magnesium alloys”, Materials Science and
Engineering, A226-228, pp.856~860.,1997
【31】賴耿陽,「非鐵金屬材料」, 復漢出版社, 新竹第
174-191頁, 1998,
【32】ASM, “Magnesium Alloys”, Metals Handbook, 9th
Edition,Vol. 6, pp.425-434, 1985
【33】ASM,“Magnesium Alloys”, Metals Handbook, 8th
Edition, Vol.8, pp.314-319, 1976
【34】林欣滿, 「添加鋁對鎂鋰合金特性影響之研究」, 逢甲大
學, 碩士論文, 民國93 年。
【35】B. Smola, I. Stul′ıkov′a, V. Oˇcen′aˇsek, J.
Pelcov′a and V.Neubert, “Annealing effects in
Al–Sc alloys”, Materials Science and Engineering,
A 462, pp.370–374, 2007
【36】Norman E. Dowling, “Mechanical Behavior of
Materials”, Second Edition, pp.357-358
【37】趙少汴, 王忠保,「抗疲勞設計-方法與數據」, 機械工業出
版社, 北京, 第9頁
【38】Robert E. Reed-Hill, “Slip Bands”, Physical
Metallurgy Principles, 3rd Edition, pp.147~148 ,1994
【39】Robert E. Reed-Hill, “Failure By Easy Glide”,
Physical Metallurgy Principles, 3rd Edition,
pp.725~726, 1994
【40】Robert E. Reed-Hill, “The Microscopic Aspects of
Fatigue Failure”, Physical Metallurgy Principles,
3rd Edition, pp.755~760, 1994
【41】C. Laird, “Fatigue Crack Propagation”, ASTM STP
415, ASTM, Philadelphia, pp.131, 1967
【42】Norman E. Dowling, “Mechanical Behavior of
Materials”, Second Edition, pp.125~127
【43】劉國雄等編著, “工程材料科學”, 全華科技圖書股份有限
公司,406頁, 民國88年10月
【44】Luo J, Mei Z, Tian WH, Wang ZR., “Diminishing of
work hardening in electroformed polycrystalline
copper with nano-sized and uf-sized twins”,
Materials Science and Engineering, Volume 441,
pp.282-290, December 2006
【45】A.Alamo and A.D.Banchik, “Precipitation Phenomenon
in the Mg-31 at%Li-1at%Al Alloy”, Vol. 15,
pp.222-229, 1980
【46】Guang Sheng Song, “Some New Characteristics of the
Strengthening Phase in β-phase Magnesium -Lithium
Alloys Containing Aluminum and Beryllium”
Materials Science and Engineering , Vol.371,
pp.371-376, 25 April 2004,
【47】李明峰, 「合金元素對Mg-9Li合金加工性及腐蝕性之影
響」, 大同大學, 碩士論文, 2007年
【48】Y.W.Kim, D.H.Kim, H.I.Lee, C.P.Hong,“WidmanstÄtten
Type Solidification in Squeeze Casting of Mg-Li-Al
Alloys”, Scripta Mater., Vol. 38, pp.923-929, 1998
【49】P.Crawford, R.Barrosa, J.Mendez, J.Foyos and
Es-Said, “On the transformation characteristics of
LA141A (Mg-Li---Al) alloy”, Journal of Materials
Processing Technology, Vol. 56, pp.108-118, January
1996
【50】A.Sanschagrin, R.Tremblay, R.Angers, D.Dube,
“Mechanical properties and microstructure of new
magnesium—lithium base alloys”, Materials
Science and Engineering , Vol.220, pp.69-77, 1996
【51】C.C. Hsu, J.Y. Wang, S. Lee, “Room Temperature
Aging Characteristic of MgLiAlZn Alloy”, Materials
Transaction, Vol.49, p.2728-2731, 2008
【52】J.Y. Wang, “Mechanical Properties of Room
Temperature Rolled MgLiAlZn Alloy”, Journal of
Alloys and Compounds, Vol.485, p.241-244, 2009
【53】C.T.Chiang, S.Lee, C.L.Chu, “Rolling Route for
Refining Grains of Super Light Mg-Li Alloys
Containing Sc and Be”, Trans. Nonferrous Met. Soc.
China, Vol.20, pp.1374-1379, 2010
【54】陳學翰, 「Be、Sc微量元素添加對LAZ1110合金機械性質之
研究」, 東華大學材料科學與工程學系, 碩士論文, 2008年
【55】X.H.Chen, F.S.Pan, J.J.Mao, J.F.Wang, D.F.Zhang,
A.T.Tang, J.Peng, “Effect of Heat Treatment on
Strain Hardening of ZK60 Mg Alloy, Materials and
Design, Vol.32, pp.1526-1530, 2011
【56】C.W.Yang, T.S.Lui, L.H.Chen, H.E.Hung, “Tensile
mechanical properties and failure behaviors with
the ductile-to-brittle transition of the α+β-type
Mg-Li-Al-Zn alloy”, Scripta Materialia, Vol.61,
pp.1141-1144, 2009
【57】林逸華、宋振銘、王建義, 「Mg-Li-Al-Zn 合金振動破壞性
質探討」, 鎂合金產業通訊, 40 期, 49-56頁, 民國97 年
【58】T.Q.Li, Y.B.Liu, Z.Y.Cao, D.M.Jiang, L.R.Cheng,
“The tensile properties and high cyclic fatigue
characteristics of Mg-5Li-3Al-1.5Zn-2Re alloy”,
Materials Science and Engineering, Vol.527,
pp.7808~7811, 2010