跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鍾雙兆
Shuang-Chao Chung
論文名稱: 多波長光源與應用於血氧濃度探測之研究
The research of multi wavelength light source and its application in pulse oximeter
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 104
中文關鍵詞: 血氧飽和濃度血氧計光體積變化描記圖皮膚模型
外文關鍵詞: SpO2, Pulse Oximeter, PPG, Skin Model
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們應用LED光源窄頻與可靠性高之優點,首先完成一多波長調變之光源,探討多波長光源於生物組織之傳播行為之差異。然後,我們建立一可靠有效的光學皮膚模型,使用蒙地卡羅光追跡之方式,模擬光於皮膚組織吸收與散射差異之特性,研究光於生物組織之能量傳遞行為,進而了解入射光在通過組織後,光被皮膚組織吸收和散射之現象,進而優化系統之效率。此研究方式透過電腦模擬,可有效了解光於生物組織可能之行為,提供更精確之光學系統設計,進而改良傳統反射式血氧飽合測定儀效率低之缺點。
    本論文中,我們提出一新型式的反射式血氧飽合濃度系統,利用一菲涅爾透鏡來重新調制光入射待測生物組織的光學傳播行為,完成一高效能之反射式血氧濃度感測器。此新型血氧感測器可在在低訊號身體部位(如手腕)量測出血氧訊號,並且準確度達到醫療等級之水準。此項研究相信能對反射式血氧飽合濃度計之效率與準確性有所提升,使得非侵入式的生醫檢測有著更廣範之應用。


    Photoplethysmography (PPG) is a useful technique that widely used to monitor blood changes which induced by cardiac pulsations. Pulse oximer uses this technique of PPG to estimate arterial blood oxygen saturation values (SpO2) and pulse rate (PR). In this thesis, a new reflective pulse oximeter is proposed and demonstrated with implanting a Fresnel lens, which enhances the reflected signal. An optical simulation model incorporated with human skin characteristics is presented to evaluate the capability of the new reflected optical system. Based on the skin model, the new prototype is optimized and realized. Compared with the other reflective oximeters, the reflected signal light detected by the photodiode is effectively enhanced. The prototype was able to accurately measure within an error of + 3% for SpO2 and PR respectively from the wrist.

    目錄 摘要 I Abstract II 致謝 III 目錄 VI 圖索引 X 表索引 XIII 第一章 緒論 1 1-1 光譜學與技術發展 1 1-2 研究動機 2 1-3 文獻探討 4 1-4 論文大綱與安排 5 第二章 LED基礎原理介紹 7 2-1 LED發光原理及發光特性 8 2-2 光學色彩特徵參數 10 2-2-1 色座標 10 2-2-2 色溫 11 2-2-3 演色性 12 2-3 不同光波長光於介質之差異 14 2-3-1 LED光源 14 2-3-2 光學系統 15 2-3-3 電路控制系統 16 2-3-4 範例一:非生物組織之光學特性差異 17 2-3-5 範例二:心律檢測 19 2-4 結論 20 第三章 皮膚組織光學基礎原理介紹 22 3-1 生物組織之光學特性 23 3-1-1 光於皮膚組織的傳播行為­穿透、反射、吸收與散射 25 3-1-2 光在生物組織的散射傳播 27 3-2 皮膚光學模型 29 3-2-1 蒙地卡羅光線追跡法 29 3-2-2 皮膚模型建立流程與模擬參數 30 3-3 結論 33 第四章 多波長光源運用於血氧濃度探測之研究 34 4-1 血氧濃度器原理 36 4-2 反射式血氧濃度器光學系統之研究 41 4-2-1 光源與光偵測器之選擇 41 4-2-2 光源波長飄移對血氧訊號之影響 45 4-2-3 LED與PD距離對AC、DC和PI之影響(模擬與實驗) 46 4-3 新型反射式血氧濃度設計 51 4-4 結論 54 第五章 反射式血氧飽合測定儀之製作與實驗結果 55 5-1 新型反射式血氧濃度器製作 55 5-1-1 光源與PD 55 5-1-2 Fresnel透鏡製作 56 5-2 實驗系統與量測結果 58 5-2-1 光源模型配光曲線分布 58 5-2-2 皮膚模型實驗驗證 60 5-2-3 市售產品之比較 63 5-3 血氧數值之準確度測試 64 5-4 臨床驗證 67 5-5 結論 69 第六章 結論 70 6-1 結論 70 6-2 未來展望 71 參考文獻 73 中英文名詞對照表 78 個人著作列表 86

    參考文獻
    [1] J. C. Stover, Optical Scattering:Measurement and Analysis (McGraw-Hill, New York, 1990).
    [2] A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533-535 (1981).
    [3] R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bülow, and M. Kjaer, “Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease,” Scand. J. Med. Sci. Sports 11, 213-222 (2001).
    [4] J. Spigulis, “Optical noninvasive monitoring of skin blood pulsations,” Appl. Opt. 44, 1850-1857 (2005).
    [5] J. F. Kelleher, “Pulse oximetry,” J. Clin. Monit. 5, 37-62 (1989).
    [6] E. Hill, M. D. Stoneham, S-J Fearnley, “Practical applications of pulse oximetry,” Update in Anaesthesia (UIA) 24, 156-159 (2008).
    [7] M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12, 062104:1-14 (2007).
    [8] J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28, R1-R39 (2007).
    [9] K. K. Giuliano and T. L. Higgins, “New-generation pulse oximetry in the care of critically ill patients,’’ Am. J. Crit. Care 14, 26-37 (2005).
    [10] V. König, R. Huch, and A. Huch, “Reflectance pulse oximetry--principle and obstetric application in the Zurich system,” J. Clin. Monit. 14, 403-412 (1998).
    [11] H. Santha, N. Stuban, and G. Harsanyi, “Design considerations of small size reflective type pulse oximeter heads in special applications,’’ 2006 1st IEEE Electronics Systemintegration Technology Conference 1, 404-408 (2006).
    [12] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, “Wearable photoplethysmographic sensors - past and present,” Electronics 3, 282-302 (2014).
    [13] A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol. Meas. 119, 334-335 (1937).
    [14] T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, “Improvement of an earpiece oximeter,” 13th Annual Meeting of the Japanese Society of Medical Electronics and Biological Engineering, 90–91 (1974).
    [15] Y. Mendelson, J. C. Kent, B. L. Yocum and M. J. Birle, “Design and evaluation of a new reflectance pulse oximeter sensor,” Med. Instrum. 22, 167-173 (1988).
    [16] Y. Mendelson and C. Pujary, “Measurement site and photodetector size considerations in optimizing power consumption of a wearable reflectance pulse oximeter,’’ Proc. the 25th Annual Meeting Conference of the IEEE EMBS 4, 3016–3019 (2003).
    [17] R. P. Dresher and Y. Mendelson, “Reflectance forehead pulse oximetry : effects of contact pressure during walking.” Proc. the 28th IEEE EMBS Annual Meeting Conference 1, 3529-3532 (2006).
    [18] H. J. Round, “A note on carborundum,” Electrical World 49, 309-310 (1907).
    [19] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
    [20] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlInGaP visible light emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
    [21] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InAlGaP/GaAs visible light-emitting diodes,” Appl. Phys. Lett. 58, 1010-1012 (1991).
    [22] M. G. Craford, “LEDs for solid state lighting and other emerging applications: status, trends, and challenges,” Proc. SPIE 5941, 1-10 (2005).
    [23] H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, “Metal organic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353-355 (1986).
    [24] Y. Koide, N. Itoh, K. Itoh, N. Sawaki, and I. Akasaki, “Effect of AlN buffer layer on AlGaN/a-Al2O3 heterepitaxial growth by metal organic vapor phase epitaxy,” Jpn. J. Appl. Phys. 27, 1156-1161 (1988).
    [25] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys. 31, L139-L142 (1992).
    [26] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
    [27] D. A. Skoog and J. J. Leary, Principles of Instrumental Analysis (Thomson Learning, New York, 1992).
    [28] V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics (SPIE PRESS, Washington, 1998).
    [29] Lumileds Holding B. V., http://www.lumileds.com/.
    [30] M. G. Craford, “LEDs for solid state lighting and other emerging applications : status, trends, and challenges,” Proc. SPIE 5941, 1-10 (2005).
    [31] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for lighting based on cross-correlation in mid-field region,” Opt. Lett. 31, 2193-2195 (2006).
    [32] A. Wilm, “Requirements on LEDs in etendue limited light engines,” Proc. SPIE 7001, 70010F:1-10 (2008).
    [33] C. C. Sun, S. Y. Tsai, T. X. Lee, and W. T. Chien, “Enhancement of angular flux utilization and light extraction efficiency based on micro array in GaN LEDs,” Proc. SPIE 7617, 76170A:1-5 (2010).
    [34] C. C. Sun, I. Moreno, Y. C. Lo, B. C. Chiu, and W. T. Chien, “Collimating lamp with well color mixing of red/green/blue LEDs,” Opt. Express 20, A75–A84 (2012).
    [35] O. Noboru and A. Robertson, Colorimetry : Fundamentals and Applications (John Wiley & Sons, Hoboken, 2006).
    [36] N. Narendran, N. Maliyagoda, L. Deng, and R. M. Pysar, “Characterizing LEDs for general illumination applications : mixed-color and phosphor-based white sources,” Proc. SPIE 4445, 137-147 (2001).
    [37] V. Tuchin, Tissue Optics - Light Scattering Methods and Instruments for Medical Diagnosis, 2 ed. (SPIE, Bellingham, 2007).
    [38] M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
    [39] A. J. Welch and M. C. J. van Gemert, Tissue Optics, (Academic, New York, 1992).
    [40] H. Van de Hulst, Multiple Light Scattering (Elsevier, New York, 1980).
    [41] S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo of light propagation in tissue,” SPIE Institute Series 5, 102-111 (1989).
    [42] J. L. Reuss, “Multilayer modeling of reflectance pulse oximetry,” IEEE Trans. Biomed. Eng. 52, 153-159 (2005).
    [43] A. Ishimaru, Wave Propagation and Scattering in Random Media (Elsevier, New York, 1978).
    [44] B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824-830 (1983).
    [45] S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162-1168 (1989).
    [46] L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Programs in Biomed. 47, 131-146 (1995).
    [47] W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
    [48] Z. Wang, L. Wang, Y. T. Zhang, and X. D. Chen, “Monte Carlo simulation of light propogation in human tissue models,” Bioinformatics and Biomedical Engineering 3, 11–13 (2009).
    [49] Breault Research Organization, Inc., http://www.breault.com.
    [50] C. C. Sun, C. Y. Lin, T. X. Lee, and T. H. Yang, “Enhancement of light extraction of GaN-based LED with introducing micro-structure array,” Opt. Eng. 43, 1700-1701 (2004).
    [51] T. X. Lee, C. Y. Lin, S. H. Ma, and C. C. Sun, “Analysis of position-dependent light extraction of GaN-based LEDs,” Opt. Express 13, 4175–4179 (2005).
    [52] Y. C. Chen, C. J. Jiang, J. S. Huang, S. Y. Chen, and C. C. Sun, “Imaging and confocal system for in vivo measurements of human-iris spectral reflectance,” J. Disp. Technol. 10, 595-600 (2014).
    [53] C. C. Sun, S. C. Chung, S. H. Yang, Y. W. Yu, W. T. Chien, H. K. Chen, and S. P. Chen, “High-directional light source using photon recycling with a retro-reflective Dome incorporated with a textured LED die surface,” Opt. Express 21, 18414-18423 (2013).
    [54] Oregon Health & Science University, http://omlc.org.
    [55] OSI Optoelectronics, http://www.osioptoelectronics.com.
    [56] OSRAM GmbH., http://www.osram-os.com.
    [57] M. J. Madou, Fundamentals of Microfabrication : The Science of Miniaturization, 2 ed. (CRC Press, Boca Raton, 2012).
    [58] General Guidance Document: Non-Invasive Pulse Oximeter (1992).
    [59] International Electrotechnical Commission (IEC), IEC 60601-1 Medical Electrical Equipment - Part 1: General Requirements for Safety and Essential Performance (2005).
    [60] International Organization for Standardization (ISO), ISO 80601-1 Medical Electrical Equipment -- Particular Requirements for Basic Safety and Essential Performance of Pulse Oximeter Equipment for Medical Use (2005).

    QR CODE
    :::