跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃信富
Hsin-Fu Huang
論文名稱: 通隧引致隧道上方短樁之反應
Short pile responses caused by tunneling
指導教授: 李崇正
Chung-Jung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 177
中文關鍵詞: 樁載重試驗砂土土壤漏失隧道基樁
外文關鍵詞: Pile loading test, Sandy ground, Ground loss, Pile, Tunnel
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用離心模型試驗,探討於飽和砂土層中進行隧道掘進導致之地盤變位對隧道上方既存基樁之影響。以體積控制方式模擬土壤漏失量,分別探討(1)於固定土壤漏失量且改變基樁距隧道中心不同距離以及於隧道中心軸正上方,在不同土壤漏失量下,進行基樁載重試驗,以觀察地中應力場改變時基樁承載力的變化。(2)於鄰旁隧道以不同工作載重比且改變基樁距隧道中心不同距離,觀察通隧引致既存基樁之反應。
    研究結果顯示,於新挖隧道正上方進行基樁載重試驗,在土壤漏失量為2%的時候,基樁承載力減少60%,其樁尖承載力減少95%。通隧引致鄰近基樁之荷重傳遞行為,會受到下列因素影響:(1)通隧引致隧道之土壤漏失量,(2)基樁距隧道中心軸之水平距離,(3)樁頭所含工作載重的大小。通隧引致隧道之土壤漏失量大小會影響樁身軸向力、樁身表皮摩擦力與樁頭沉陷量。當土壤漏失量開始產生時,樁身軸向力會因為樁尖點承力減小而隨著減少,使得樁身表面摩擦力逐漸發揮作用。隨著土壤漏失量增加,樁頭沉陷量也會逐漸增加。基樁距隧道中心軸之水平距離逐漸拉大,則樁身軸向力分布、樁身表面摩擦力的變化量與樁頭沉陷量會逐漸變小,當基樁距隧道中心軸之距離為10m時,則基樁受到的影響不大。於隧道中心軸正上方,在樁頂加載為工作載重比0.5時,樁尖與樁周的土壤會提供較大的阻抗,則土壤漏失量產生時該樁身表面摩擦力為正摩擦力,於樁頂加載為工作載重比0.3,則土壤漏失量產生時樁身表面摩擦力為負摩擦力。


    A series of centrifuge model tests were performed to assess tunneling-induced ground deformations in sandy ground and their effects on adjacent pile foundations. Two topics have been investigated by modeling the ground loss with the way of volume control in this study. First of all, the pile loading test has been analyzed in the different conditions, including the ground loss and the distance between the pile and the tunnel center. Secondly, the load transfer mechanism of the piles has been analyzed in the different conditions, including ground losses, the load on the pile head, and the distance between the pile and the tunnel center.
    According to the result in the research, the loss of the ultimate bearing capacity and of the pile end bearing capacity were 60% and 95%, respectively. When the ground loss reached 2% during the pile loading test conducted above the tunnel center. Load transfer behaviors on a pile caused by adjacent tunneling mainly depended on the followed factors: (1) ground loss, (2) the horizontal distance between the pile and the tunnel center, (3)the axial load of the pile head. Ground loss caused by tunneling would affect the distribution of axial force, the skin friction on a pile, and the settlement of pile head. The distribution of axial force along a pile will decrease with decreasing pile point bearing capacity if the ground loss increased. The settlement of pile head will also increase with increasing the ground loss. The increase in the horizontal distance between the pile and the tunnel center will lead to the decrease in the settlement of pile head and the axial force and the skin friction on a pile. The tunneling will not affect the pile if the horizontal distance between the pile and the tunnel center was larger than 10m. When the working load ratio on pile head was 0.5, the soil around the pile will provide the resistance for the pile, and the skin friction along a pile was positive as ground loss occurred; however, that was negative under the condition of 0.3 of working load ratio on the pile.

    第一章 緒論 1 1-1 緣起 1 1-2 研究動機 2 1-3 研究架構 3 1-4 論文內容 5 第二章 文獻回顧 8 2-1 軟地通隧引致之地盤沉陷 8 2-1-1 地盤沉陷之原因 8 2-1-2 最大地表沉陷量和土壤漏失量 10 2-1-3 砂土層中之離心隧道模型試驗 13 2-2 側向土壤移動對樁基礎的影響之相關研究 15 2-2-1 基樁承受側向土壓力之數值分析方法 16 2-2-2 基樁承受側向土壓力之模型試驗 19 2-3 軟地通隧對鄰近樁基礎影響之相關研究 21 2-4 樁基礎承載力 25 2-4-1 基樁荷重傳遞機制 26 2-4-2 單樁容許垂直承載力 26 2-5 模擬隧道崩垮之控制方法 30 2-5-1 體積控制模擬隧道崩垮 30 2-5-2 壓力控制模擬隧道崩垮 32 2-6 離心模型基本原理 32 2-6-1 離心模型之基本相似律 33 2-6-2 離心模型試驗之模型模擬 35 2-7 綜合相關文獻之啟發 37 第三章 試驗土樣、儀器設備及試驗方法 73 3-1 試驗土樣 73 3-2 試驗儀器及相關設備 73 3-2-1 地工離心機 73 3-2-2 模型試驗箱 74 3-2-3 移動式霣降機 75 3-2-4 複動式氣壓缸 76 3-2-5 模型隧道 76 3-2-6 土壤漏失量量測設備 77 3-2-7 其他量測工具 78 3-3 模型製作及試體準備 78 3-3-1 模型計測樁之製作及基本性質 78 3-3-2 試體製作 79 3-3-3 模型隧道製作 81 3-4 試驗方法與步驟 82 第四章 試驗結果與分析 111 4-1 模型試驗及試驗參數 111 4-2 模型計測樁與體積漏失量測儀校正 113 4-2-1 模型計測樁校正 113 4-2-2 隧道體積漏失量測儀校正 113 4-3 基樁載重試驗分析 114 4-3-1 定義基樁極限承載力 115 4-3-2 土壤漏失量對基樁承載力的影響 117 4-3-3 基樁距隧道的遠近對基樁承載力的影響 119 4-3-4 在鄰近隧道進行樁載重試驗對襯砌的影響 120 4-4 通隧對鄰近受載基樁的影響試驗分析 121 4-4-1 樁身軸向力分布分析 122 4-4-2 樁身表皮摩擦力分析 124 4-4-3 隧道開挖對基樁承載力的變化 129 4-4-4 基樁樁頭沉陷 130 4-4-5 地表沉陷與樁頭沉陷的關係 132 4-4-6 隧道開挖對樁尖土壤反力係數的影響 133 4-4-7 隧道開挖對隧道支撐壓力的影響 135 4-4-8 隧道開挖導致既存基樁荷重傳遞機制分析 136 第五章 結論與建議 170 5-1 結論 170 5-2 建議 172 參考文獻 174

    [1] 王繼勝等人,「潛盾工法與地表沉陷」,地工技術雜誌,第二十三期,第72-83頁(1988)。
    [2] 江國輝,「通隧引致鄰近基樁之荷重傳遞行為」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
    [3] 李崇正,林志棟,林俊雄,「大地工程研究者知新工具:離心模型試驗」,岩盤工程研討會論文集,中壢,第649-669頁(1994)。
    [4] 邱顯堯,「並行雙隧道變形之互制行為」,碩士論文,國立中央大學土木工程學系,中壢(1997)。
    [5] 周小文,「盾构隧道土压力离心模型试验及理论研究」,博士论文,清华大学水利水电工程系,北京 (1999)。
    [6] 林煒倫,「砂土層中隧道開挖引致之地拱演化」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
    [7] 莊孟翰,「未襯砌隧道壁變形引致地盤下陷分布形態分析」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
    [8] 陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,博士論文,國立中央大學土木工程學系,中壢(1999)
    [9] 陳秉嵩,「砂土層隧道之穩定性與土壓力分布」,碩士論文,國立中央大學土木工程學系,中壢(2005)
    [10] 郭家銘,「砂土層中通隧引致之地盤變位及其對既存基樁的影響」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
    [11] 廖慶隆,「電子量測系統之基本特性及在土木工程上的應用」,土木水利,第12卷,第三期,第85-100頁,1985。
    [12] Acutronic, Civil Engineering Centrifuge Model 665-1 Installation Manual 5941E, France (1992).
    [13] Acutronic, Geotechnical Centrifuge Model 665-1 Product Description 5933H, France (1993).
    [14] Atkinson, J.H., and Potts, D.M., “Subsidence above shallow tunnels in soft ground,”Journal of Geotechnical Engineerimg, ASCE, Vol. 103,No. GT4, pp. 307-325 (1977).
    [15] Bezuijen,A.,Schrier,J.V.D., “The influence of a bored tunnel on pile foundations,”Centrifuge 94 edited by Lee and Tan, Balkema, Rotterdam,pp.681-686(1994).
    [16] Broms,B.B., “ Lateral resistance of piles in cohesive soil,” Journal of the Soil Mechanics and Foundations Division SM2, ASCE, Vol. 90, pp. 27-63 (1964).
    [17] Chambon, P. and Corté, J.F., “Shallow tunnels in cohesionless soil: stability of tunnel face,”Journal of Geotechnical Engineering, ASCE, Vol. 120, No. 7, pp. 1148-1165 (1994).
    [18] Chambon, P., Corté, J.F., and Garnier,J., “Face stability of shallow tunnels in granular soils,”Proceedings, International Conference Centrifuge 91, Boulder, Colorado, pp. 99-105 (1991).
    [19] Chen, L. T., Poulos, H. G., and Loganathan, N., “Pile responses caused by tunneling,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 3, pp. 207-215 (1999).
    [20] Clough, G.W., and Schmidt, B., “Design and performance of excavations and tunnels in soft clay,”In Soft Clay Engineering, pp. 600-634 (1981).
    [21] Cording, E.J., and Hansmire, W.H., “Displacement around soft ground tunnels,”Proc. 6th Panamerican Conf. On Soil Mechanics And Foundation Engineering, Buenon Aires, pp. 571-633 (1975).
    [22] Fujita, K., “Prediction of surface settlements caused by shield tunnelling,”Proceedings, International Conference on Soil Mechanics, Mexico, Vol. 1, pp. 239-246 (1982).
    [23] Jacobsz, S.W., Standing, J.R., Mair, R.J., Hagieara, T., and Sugiyama, T., “Centrifuge modeling of tunneling near driven piles,”Soils and Foundations, Vol. 44, No. 1, pp. 49-56(2004).
    [24] Lee, C.J.,Chiang, K.H., Kou, C.M., “Ground movement and tunnel stability when tunneling in sandy ground,”Journal of the Chinese Institute of Engineers, Vol. 27, No. 7, pp. 1021-1032(2004).
    [25] Lee, C.J., Wu, B.R., and Chiou, S.Y., “Soil movements around a tunnel in soft soils,”Proc. Natl. Sci. Counc. ROC, series A, Vol. 25, No. 2, pp. 235-247 (1999).
    [26] Lee, Gordon T.K., and Ng, Charles W.W. “Effects of advancing open Face tunneling on an existing loaded Pile,”Journal of Geotechnical and Geoenvironmental Engineering , ASCE, Vol. 131, No. 3, pp.193-201(2005).
    [27] Longanathan, N., Poulos H.G., and Xu, K. J., “Ground pile-group responses due to tunnellimg,”Soils and Foundations, Vol. 41, No. 1, pp. 57-67 (2001).
    [28] Longanathan, N., Poulos H.G., and Stewart, D.P., “Centrifuge model testing of tunnelling-induced ground and pile deformations,”Geotechnique, Vol. 50, No. 3, pp. 283-294 (2000).
    [29] Mair, R.J., Taylor, R.N., and Bracegirdie, A.,“Subsurface settlement profiles above tunnels in clays,”Geotechnique, Vol. 43, No. 2, pp. 315-320(1993).
    [30] Matsui,T., Hong, W.P., and Ito, T., “Earth pressures on piles in a row due to lateral soil movements,” Soils and Foundations, Vol. 22, No. 1, pp. 71-81 (1982) .
    [31] Mroueh, H., and Shahrour, I., “Three-dimensional finite element analysis of the interaction between tunneling and pile founding,”Interational Journal for Numerical and Analytical Method in Geomechanics, Vol.26,No.3,pp.217-230(2002) .
    [32] Poulos, H.G. “Analysis of piles in soils undergoing lateral movements,” Journal of the Soil Mechanics and Foundations Division SM5 ,ASCE,Vol.99,pp.391-406(1973).
    [33] Poulos, H. G. and Chen, L.T. “Pile response due to excavation-induced lateral soil movement,” Journal of Geotechnical and Geoenvironmental Engineering ,ASCE, Vol.123,No.2,pp.94-99(1997) .
    [34] Poulos, H. G. ,Chen, L.T.,and Hull, T.S., “Model tests on single pile subjected to lateral soil movement,” Soils and Foundations, Vol.35,No.4,pp.85-92(1995) .
    [35] Poulos, H. G. ,Chen, L.T.,and Hull, T.S., “Model tests on pile group subjected to lateral soil movement,” Soils and Foundations, Vol.37,No.1,pp.1-12(1997) .
    [36] Poulos, H. G., and Davis, E. H.,Pile foundation analysis and design, Wiley, New York,pp.311-322(1980) .
    [37] Sugiyama, H., and Goto, S.,”Evaluation of the earth pressure redistributeion around ECL tunnels,”Physical Modelling in Geotechnics:ICPMG ’02, Canada, pp. 785-790(2002).

    QR CODE
    :::