| 研究生: |
曾彥鈞 Yen-chun Tseng |
|---|---|
| 論文名稱: |
低維度系統之熱電特性 Thermoelectric properties of low-dimensional structures |
| 指導教授: |
郭明庭
David Ming-ting Kuo |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 熱電 、奈米結構 、量子點 、量子井 、低維度結構 、熱整流 、應力 、熱電優值 |
| 外文關鍵詞: | thermoelectric, nanostructure, quantum dot, quantum well, low-dimensional structures, heat rectification, strain, figure of merit |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討低維度系統於線性與非線性響應區間之傳輸及熱電特性。此低維度系統包括單層P型量子井結構和耦合量子點的結構。線性響應區間, P型量子井結構的熱電特性研究,討論平坦價電能帶結構(來自於混合價電帶與應力效應) 將如何影響電導率、席貝克係數、電子熱導率和熱電優值。聲子熱導的部分,我們則是採用二維聲子輻射傳遞的方程式加以計算。我們發現量子井內的最大熱電優值可利用調變合適的應力大小而將有所提升。熱電優值的提升可歸因於: 席貝克係數的平方項受應力介入提升的量強於電導率的下降量。另外,我們亦探討了量子點陣列在庫倫阻斷區間的熱電特性系統,並使用了延展的哈伯模型和安德森模型來描述量子點陣列接面之電子總能。凱帝旭格林函數則是被用以計算電導、席貝克係數和電子熱導。除此之外,我們求解一維聲子輻射傳遞來計算奈米線的聲子熱導。於庫倫阻斷範疇內,聲子熱導是遠大於電子熱導。因此,我們可以分別地藉由提升電導和降低聲子熱導以得到最佳化熱電優值。藉此,我們於砷化銦鎵/砷化鎵的一維量子點陣列接面系統中,論證室溫下的熱電優值可以接近於1.5。不過,當維度從一維量子點陣列嵌入奈米線開始過渡至二維量子點陣列嵌入量子井時,最佳的熱電優值將有顯著的下降。其原因來自於聲子熱導將隨著量子點陣列系統從一維過渡至二維而大幅提升。
接下來,我們理論地研究串接耦合量子點連接金屬電極之非線性傳輸特性。在包利自旋阻斷的條件下,串接耦合量子點的電流整流和負微分電導之行為,主要來自於受偏壓方向不同而有所不同的機率權重和共振能階的失去而成。除此之外,我們亦觀察到齊曼效應的自旋偏振方向相依的電流整流現象。其中,最大的自旋偏振相依電流發生在順向偏壓的情況之下。這與前述電流整流的現象有所不同。最後,我們論證了串接耦合量子點系統,電子具有方向相依的熱流行為(熱整流)。此熱整流行為源於非對稱性量子點能階分佈。我們估算奈米線的聲子熱流,討論串接耦合量子點系統如何降低聲子熱流以期觀測到電子的熱整流行為。
The thermoelectric properties of low-dimensional systems including a single p-type quantum well (QW) and a serially coupled quantum dot chain (CQDC) are investigated in the linear response regime. In a p-type QW, we focus on the influences of flat valence subbands arising from the valence-band mixing and strain on the thermoelectric properties, such as electrical conductivity (, Seebeck coefficient (S), electrical thermal conductivity and figure of merit (ZT). The phonon thermal conductivity is calculated by the equation of phonon radiative transfer (EPRT) method. In this work, we find the maximum ZT of QWs can be enhanced under strain. Such an enhancement of ZT results from the fact that the enhancement of S2 is stronger than the reduction of .
The thermoelectric properties of CQDC connected to electrodes are illustrated by using a combination of the extended Hurbbard model and Anderson model. The electrical conductance, Seebeck coefficient and electron thermal conductance are calculated by the Keldysh Green’s function technique. In addition, we calculate the phonon thermal conductivity of 1D-nanowire using the EPRT method. In the Coulomb blockade regime, phonon thermal conductance is much larger than electron thermal conductance. Therefore, the optimal ZT can be obtained by increasing the electrical conductance and decreasing phonon thermal conductance, simultaneously. We find that the optimal ZT value can reach 1.5 at room temperature in an InGaAs/GaAs 1D-CQDC junction system. The optimal ZT values are significantly suppressed in the 2D-CQDCs. It is mainly attributed to a large enhancement of phonon thermal conductivity. Finally we theoretically study the transport and thermoelectric properties of serially coupled QDs (SCQDs) in the nonlinear response regime. We observe the spin-polarization current rectification under the Zeeman effect. We also demonstrate that the electron heat current of SCQDs exhibits a heat rectification behavior in the low temperature regime.
[1] Z. Tian, S. Lee, and G. Chen, “A comprehensive review of heat transfer in thermoelectric materials and devices”, arXiv: 1401.0749 (2014).
[2] M. Zebarjadi, K. Esfarjania, M. S. Dresselhaus, Z. F. Ren, and G. Chen, “Perspectives on thermoelectric: from fundamentals to device applications”, Energy Environ. Sci. 5, 5147 (2012).
[3] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects”, Energy Environ. Sci. 2, 466 (2009).
[4] Arun Majumdar, “Thermoelectric devices: Helping chips to keep their cool”, Nat. Nanotechnol. 4, 214 (2009).
[5] Lon E. Bell, “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems”, Science 321, 1457 (2008).
[6] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, “Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit”, Science 303, 818 (2004).
[7] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, “Quantum dot superlattice thermoelectric materials and devices”, Science 297, 2229 (2002).
[8] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature (London) 413, 597 (2001).
[9] Francis J. DiSalvo, “Thermoelectric cooling and power generator”, Science 285, 703 (1999).
[10] G. Min and D. M. Rowe, “Cooling performance of integrated thermoelectric microcooler”, Solid State Electron. 43, 923 (1999).
[11] G. Mahan, B. Sales, and J. Sharp, “Thermoelectric materials: New approaches to an old problem”, Physics Today 50, 42 (1997).
[12] D. M. Rowe, CRC Handbook of thermoelectric, CRC Press, Bocar Raton, FL (1995).
[13] A. F. Ioffe, Physics of semiconductors, New York, academic press (1960).
[14] A. F. Ioffe, Semiconductor thermoelements and thermoelectric cooling, Infosearch Ltd., London (1957).
[15] G. D. Mahan and J. O. Sofo, “The best thermoelectric”, Proc. Natl. Acad. Sci. USA 93, 7436 (1996).
[16] G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials” Nature Materials 7, 105 (2008).
[17] D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and Mercouri G. Kanatzidis, “CsBi4Te6: A high-performance thermoelectric material for low-temperature applications”, Science 287, 1024 (2000).
[18] B. X. Chen, J. H. Xu, and C. Uher, “Low-temperature transport properties of the filled skutterudites CeFe4-xCoxSb12”, Phys. Rev. B 55, 1476 (1997).
[19] B. C. Sales, D. Mandrus, R. K. Williams, “Filled skutterudite antimonides: A new class of thermoelectric materials”, Science 272, 1325 (1996).
[20] J. Martin, G. S. Nolas, H. Wang, and J. Yang, “Thermoelectric properties of silicon-germanium type I clathrates”, J. Appl. Phys. 102, 103719 (2007).
[21] Bo B. Iversen, Anders E. C. Palmqvist, David E. Cox, G. S. Nolas, Galen D. Stucky, Nick P. Blake, H. Metiu, “Why are clathrates good candidates for thermoelectric materials?”, J. Solid State Chem. 149, 455 (2000).
[22] S. J. Kim, S. Hu, C. Uher, T. Hogan, B. Huang, J. D. Corbett, and Mercouri G. Kanatzidis, “Structure and thermoelectric properties of Ba6Ge25-x, Ba6Ge23Sn2, and Ba6Ge22In3: Zintl phases with a chiral clathrate structure”, J. Solid State Chem. 153, 321 (2000).
[23] G. S. Nolas, T. J. R. Weakley, and J. L. Cohn, “Structural, chemical, and transport properties of a new clathrate compound: Cs8Zn4Sn42”, Chem. Mater. 11, 2470 (1999).
[24] G. S. Nolas, J. L. Cohn, G. Slack, S. B. Schujman, “Semiconducting Ge clathrates: Promising candidates for thermoelectric applications”, Appl. Phys. Lett. 73, 178 (1998).
[25] Y. C. Lan, A. J. Minnich, G. Chen, and Z. F. Ren, “Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach”, Adv. Funct. Mater. 20, 357 (2010).
[26] Y. C. Lan, B. Poudel, Y. Ma, D. Wang, M. S. Dresselhaus, G. Chen, and Z. F. Ren, “Structure study of bulk nanograined thermoelectric bismuth antimony telluride”, Nano Lett. 9, 1419 (2009).
[27] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. F. Ren, “Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys”, Nano Lett. 8, 4670 (2008).
[28] Y. Ma, Q. Hao, B. Poudel, Y. C. Lan, B. Yu, D. Wang, G. Chen, and Z. F. Ren, “Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks”, Nano Lett. 8, 2580 (2008).
[29] X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, and Z. F. Ren, “Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy”, Appl. Phys. Lett. 93, 193121 (2008).
[30] B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. F. Ren, “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys”, Science 320, 634 (2008).
[31] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric materials”, Adv. Mater. 19, 1043 (2007).
[32] M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, J. Y. Ying, and G. Chen, “The promise of low-dimensional thermoelectric materials”, Microscale Thermophys. Eng. 3, 89 (1999).
[33] F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K. H. Lee, N. V. Myung, “Recent progress in electrodeposition of thermoelectric thin films and nanostructures”, Electrochimica Acta 53, 8103 (2008).
[34] L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B 47, 12727 (1993).
[35] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, “Experimental study of the effect of quantum well structures on the thermoelectric figure of merit”, Phys. Rev. B 53, R10493 (1996).
[36] L. D. Hicks, T. C. Harman, and M. S. Dresselhaus, “Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials”, Appl. Phys. Lett. 63, 3230 (1993).
[37] R. Venkatasubramanian, “Chap 4 Phonon blocking electron transmitting superlattice structures as advanced thin film thermoelectric materials”, Semiconductors and semimetals 71, 175 (2001).
[38] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials”, Nature 451, 168 (2007).
[39] R. Y. Wang, J. P. Feser, J. S. Lee, D. V. Talapin, R. Segalman, and Arun Majumdar, “Enhanced thermopower in PbSe nanocrystal quantum dot superlattices”, Nano Lett. 8, 2283 (2008).
[40] David M.-T. Kuo and Y. C. Chang, “Thermoelectric properties of a quantum dot array connected to metallic electrodes”, Nanotechnology 24, 175403 (2013).
[41] David M.-T. Kuo and Y. C. Chang, “Effects of interdot hopping and Coulomb blockade on the thermoelectric properties of serially coupled quantum dots”, Nanoscale Res. Lett. 7, 257 (2012).
[42] P. Trocha and J. Barnas, “Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena”, Phys. Rev. B 85, 085408 (2012).
[43] David M.-T. Kuo, S. Y. Shiau, and Y. C. Chang, “Theory of spin blockade, charge ratchet effect, and thermoelectrical properties in serially coupled quantum dot system”, Phys. Rev. B 84, 245303 (2011).
[44] David M.-T. Kuo and Y. C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions”, Phys. Rev. B 81, 205321 (2010).
[45] P. Murphy, S. Mukerjee, and J. Moore, “Optimal thermoelectric figure of merit of a molecular junction”, Phys. Rev. B 78, 161406 (2008).
[46] H. B. G. Casimir, “Note on the conduction of heat in crystals”, Physica V. 6, 495 (1938).
[47] D. Li, Y. Wu, R. Fan, P. Yang, and Arun Majumdar, “Thermal conductivity of Si/SiGe superlattice nanowires”, Appl. Phys. Lett. 83, 3186 (2003).
[48] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, Arun Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires”, Nature 451, 163 (2008).
[49] R. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. Yang, and A. Majumdar, “Thermal conductance of thin silicon nanowires”, Phys. Rev. Lett. 101, 105501 (2008).
[50] D. Donadio and G. Galli, “Temperature dependence of the thermal conductivity of thin silicon nanowires”, Nano Lett. 10, 847 (2010).
[51] D. L. Nika, E. P. Pokatilov, A. A. Balandin, V. M. Fomin, A. Rastellin, and O. G. Schimidt, “Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering”, Phys. Rev. B 84, 165415 (2011).
[52] M. Hu and D. Poulikakos, “Si/Ge superlattice nanowires with ultralow thermal conductivity”, Nano Lett. 12, 5487 (2012).
[53] D. A. Broido and T. L. Reinecke, “Theory of thermoelectric power factor in quantum well and quantum wire superlattices”, Phys. Rev. B 64, 045324 (2001).
[54] T. Koga, X. Sun, S. B. Cronin, and M. S. Dresselhaus, “Carrier pocket engineering to design superior thermoelectric materials using GaAs/AlAs superlattice”, Appl. Phys. Lett. 73, 2950 (1998).
[55] Y. C. Chang, “Enhancement of optical nonlinearity in p-type semiconductor quantum wells due to confinement and stress”, Appl. Phys. Lett. 46, 710 (1985) and reference therein.
[56] T. E. Humphrey and H. Linke, “Reversible thermoelectric nanomaterials”, Phys. Rev. Lett. 94, 096601 (2005).
[57] Y. Pei, A. D. Lalonde, H. Wang, and G. J. Snyder, “Low effective mass leading to high thermoelectric performance”, Energy Environ. Sci. 5, 7963 (2012).
[58] P. Pichanusakorn and P. Bandaru, “Nanostructured thermoelectrics”, Mater. Sci. Eng. R 67, 19 (2010) and references therein.
[59] B. K. Ridley, Quantum Processes in Semiconductors, Oxford Press (1998).
[60] S. Zwerdling, K. J. Button, B. Lax, and L. M. Both, “Internal impurity levels in semiconductors: Experiments in p-type silicon”, Phys. Rev. Lett. 4, 173 (1960).
[61] David M.-T. Kuo and Y. C. Chang, “Thermoelectric properties of a chain of coupled quantum dots embedded in a nanowire”, J. Vac. Sci. Technol. B 31, 04D106-1 (2013).
[62] M. G. Holland, “Analysis of lattice thermal conductivity”, Phys. Rev. 132, 2461 (1963).
[63] H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer, Heidelberg (1996).
[64] G. Chen and C. L. Tien, “Thermal conductivities of quantum well structures”, J. Thermophys. Heat Transfer 7, 311 (1993).
[65] M. G. Holland, “Phonon scattering in semiconductors from thermal conductivity studies”, Phys. Rev. 134, A471 (1964).
[66] Y. Liu, Y. S. Zheng, W. J. Gong, and T. Q. Lu, “I-V characteristic of electronic transport through a quantum dot chain: The role of antiresonance”, Phys. Lett. A 360, 154 (2006).
[67] David M.-T. Kuo and Y. C. Chang, “Thermoelectric properties of a semiconductor quantum dot chain connected to metallic electrodes”, arXiv:1209.0506 (2012).
[68] C. Y. Hsieh, Y. P. Shim, and P. Hawrylak, “Theory of electronic properties and quantum spin blockade in a gated linear triple quantum dot with one electron spin each”, Phys. Rev. B 85, 085309 (2012).
[69] K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, “Current rectification by Pauli exclusion in a weakly coupled double quantum dot system”, Science 297, 1313 (2002).
[70] W. G. van der Wiel, S. D. Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. Kouwenhoven, “Electron transport through double quantum dots”, Rev. Mod. Phys. 75, 1 (2002).
[71] S. M. Huang, Y. Tokura, H. Akimoto, K. Kono, J. J. Lin, S. Tarucha, and K. Ono, “Spin bottleneck in resonant tunneling through double quantum dots with different Zeeman splittings”, Phys. Rev. Lett. 104, 136801 (2010).
[72] Q. F. Sun, Y. Xing, and S. Q. Shen, “Double quantum dot as detector of spin bias”, Phys. Rev. B 77, 195313 (2008).
[73] J. Fransson and M. Rasander, “Pauli spin blockade in weakly coupled double quantum dots”, Phys. Rev. B 73, 205333 (2006).
[74] B. Muralidharan and S. Datta, “Generic model for current collapse in spin-blockaded transport”, Phys. Rev. B 76, 035432 (2007).
[75] J. Inarrea, G. Platero, and A. H. MacDonald, “Electronic transport through a double quantum dot in the spin-blockade regime: Theoretical models”, Phys. Rev. B 76, 085329 (2007).
[76] P. Trocha, I. Weymann, and J. Barnas, “Negative tunnel magnetoresistance and differential conductance in transport through double quantum dots”, Phys. Rev. B 80, 165333 (2009).
[77] M. Trigo, A. Bruchuausen, A. Fainstein, B. Jusserand, and V. Thirry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity”, Phys. Rev. Lett. 89, 227402 (2002).
[78] E. M. Weig, R. H. Blich, T. Brandes, J. Kirschbaum, W. Wegscheider, M. Bichler, and J. P. Kotthaus, “Single-electron-phonon interaction in a suspended quantum dot phonon cavity”, Phys. Rev. Lett. 92, 046804 (2004).
[79] G. Rozas, M. F. P. Winter, B. Jusserand, B. Perrin, E. Semenova, and A. Lemaitre, “Lifetime of THz acoustic nanocavity modes”, Phys. Rev. Lett. 102, 015502 (2009).
[80] David M.-T. Kuo and Y. C. Chang, “Tunneling current though a quantum dot with strong electron-phonon interaction”, Phys. Rev. B 66, 085311 (2002).
[81] Z. Z. Chen, R. Lu, and B. F. Zhu, “Effects of electron-phonon interaction on nonequilibrium transport through a single-molecule transistor”, Phys. Rev. B 71, 165324 (2005).
[82] J. E. Ure, “Study of the interaction of a local boson mode with an electronic system with finite Fermi level”, J. Phys. C 15, 4515 (1982).
[83] A. C. Hewson and D. M. Newns, “Polaronic effects in mixed and intermediate-valence compounds”, J. Phys. C 12, 1665 (1979).
[84] David M.-T. Kuo and Y. C. Chang, “Thermoelectric effects of multiple quantum dot junction in the nonlinear response regime”, Jpn. J. Appl. Phys. 49, 064301 (2010).
[85] P. Mani, N. Nakpathomkun, E. A. Hoffmann, and H. Linke, “A nanoscale standard for the Seebeck coefficient”, Nano Lett. 11, 4679 (2011).
[86] L. Oroszlany, A. Kormanyos, J. Cserti, and C. J. Lambert, “Nonthermal broadening in the conductance of double quantum dot structures”, Phys. Rev. B 76, 045318 (2007).
[87] L. J. Guo, E. Leobandung, and S. Y. Chou, “A silicon single-electron transistor memory operating at room temperature”, Science 275, 649 (1997).
[88] H. Ishikuro and T. Hiramoto, “Quantum mechanical effects in the silicon quantum dot in a single-electron transistor”, Appl. Phys. Lett. 71, 3691 (1997).
[89] C. Joachim, J. K. Gimzewski, and A. Aviram, “Electronics using hybrid-molecular and mono-molecular devices”, Nature 408, 541 (2000).
[90] David M.-T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure junction involving multiple energy levels”, Phys. Rev. Lett. 99, 086803 (2007).
[91] Y. C. Chang and David M.-T. Kuo, “Theory of charge transport in a quantum dot tunnel junction with multiple energy levels”, Phys. Rev. B 77, 245412 (2008).
[92] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spin in few-electron quantum dots”, Rev. Mod. Phys. 79, 1217 (2007).
[93] K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, “Current rectification by Pauli exclusion in a weakly coupled double quantum dot system”, Science 297, 1313 (2002).
[94] M. Busl, G. Granger, L. Gradreau, R. Sanches, A. Kam, M. PioroLadriers, S. A. Studenikin, P. Zawadzki, Z. R. Wasilewski, A. S. Sachrajda, and G. Platero, “Bipolar spin blockade and coherent state superpositions in a triple quantum dot”, Nat. Nanotechnol. 8, 261 (2003).
[95] S. Amaha, W. Izumida, S. Teraoka, S. Tarucha, J. A. Gupta, and D. G. Austing, “Two- and three-electron Pauli spin blockade in series-coupled triple quantum dots”, Phys. Rev. Lett. 110, 016803 (2013).
[96] F. R. Braakman, P. Barthelemy, C. Reichi, W. Wegscheider, and L. M. K. Vandersypen, “Photon- and phonon-assisted tunneling in the three-dimensional charge stability diagram of a triple quantum dot array”, Appl. Phys. Lett. 102, 112110 (2013).
[97] J. Liu, Q. F. Sun, and X. C. Xie, “Enhancement of the thermoelectric figure of merit in a quantum dot due to the Coulomb blockade effect”, Phys. Rev. B 81, 245323 (2010).
[98] R. Scheibner, M. Konig, D. Reuter, A. D. Wieck, C. Gould, H. Buhmann, and L. W. Molenkamp, “Quantum dot as thermal rectifier”, New J. Phys. 10, 083016 (2008).
[99] David M.-T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field”, Phys. Rev. B 61, 11051 (2000).
[100] Y. C. Tseng, David M.-T. Kuo, and Y. C. Chang, “Effects of valence-band mixing and strain on the thermoelectric properties of p-type quantum wells”, J. Appl. Phys. 113, 113706 (2013).
[101] Y. Zhang, M. S. Dresselhaus, Y. Shi, Z. F. Ren, and G. Chen, “High thermoelectric figure-of-merit in Kondo insulator nanowires at low temperatures”, Nano. Lett. 11, 1166 (2011).
[102] B. Li, L. Wang, and G. Casati, “Thermal diode: Rectification of heat flux”, Phys. Rev. Lett. 93, 184301 (2004).
[103] B. B. Hu, L. Yang, and Y. Zhang, “Asymmetric heat conduction in nonlinear lattices”, Phys. Rev. Lett. 97, 124302 (2006).
[104] C. R. Otey, W. T. Lau, and S. H. Fan, “Thermal rectification through vacuum”, Phys. Rev. Lett. 104, 154301 (2010).
[105] C. W. Chang, D. Okawa, Arun Majumdar, and A. Zettl, “Solid-state thermal rectifier”, Science 314, 1121 (2006).