| 研究生: |
許芷雲 Chih-Yun Hsu |
|---|---|
| 論文名稱: |
八年級機率新課程:設計與實踐 New Probability Curriculum for the Eighth Grade: Design and Practice |
| 指導教授: |
單維彰
Wei-Chang Shann |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 機率課程 、八年級 、主觀機率 、頻率機率 、古典機率 、餘事件 、樹狀圖 、教學工法 |
| 外文關鍵詞: | probability curriculum, eighth grade, subjective probability, frequentist probabaility, classical probabaility, complement events, tree diagram, didactic engineering |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣的現階段機率課程由九年級才開始,相較於他國時程明顯晚了許多,此現象即為本研究發展之緣由:在八年級設計全新的機率課程,並實驗其教學成效。在數學教育研究的方法論上,引進法國新興教學理論:教學工法(Didactic Engineering, DE)以設計機率課程和教材,達到理論與實務之實踐。故本研究將兼具三面向:一、DE的實踐:課程發展四階段的工法;二、樹狀圖:以圖象表徵處理機率運算;三、數學素養:培養機率思維與解決問題。
機率實驗課程採用研究團隊之自編教材,將樹狀圖設計為一致性的機率學習工具,引導八年級學生發展主觀機率、頻率機率、古典機率的概念,並達到處理餘事件的思維層次,也發展了解決生活實際問題之素養。並以DE從事教學設計與課堂實踐的規準。雖然事前準備工作繁雜,但它能避免研究困境,以及提高學生的課堂參與率。
研究發現,未經過機率教學的學生,已具有部分機率值的範圍、主觀機率、頻率機率、古典機率的自發性概念,猜測學生可以從生活經驗中習得機率概念,可見機率與生活經驗之密切相關性。而經過研究團隊的機率教學後,發現八年級學生在學後測驗的成績上有成長,表示學生需要一套有系統的機率教學,且少數學生甚至能延伸至獨立性與乘法原理的思維層次,也有少數學生隱約表露出條件機率的概念。
另一方面,在學生的文本中,本研究亦認出學生的機率與樹狀圖迷思:(1)理想值的概念,(2)樣本空間分群,(3)樹狀圖的分類,(4)不對稱事件的機率值,(5)加法原理與乘法原理。不過,在機率課程結束後六個月進行的延後測驗,發現學生成績相較於機率學後測驗,呈現小幅進步,表示本研究的機率教學,能使學生成功地習得機率課程的教學目標,成為其素養。
綜上所述,本研究建議機率主題可提前至八年級學習,以生活經驗作為內容主軸,並以樹狀圖為解題之技術工具。對於九年級的機率課程,建議以樹狀圖之圖形特徵導入互斥和事件、獨立性以及乘法原理的概念。而DE確實提供一套從事數學教育研究的方法論,特別是針對創新的實驗性課程。本研究也歸納出幾項在使用DE上的難處,將提供給未來以DE從事教學設計的教育同仁參考。
Currently, the probability curriculum of Taiwan has only been officially implemented since the ninth grade. Compared with other countries, our curriculum is obviously very late. This phenomenon is the motivation for this study, and it is necessary to redesign the new probability curriculum of the eighth grade and practice it. On the methodology of mathematics education research, this study uses the French teaching theory Didactic Engineering (DE) to design the probability curriculum and materials to achieve the theory and practice. The study will realize the following ideologies. (1) Practice of DE: Four stages of curriculum development. (2) Tree diagram: Using Graph representation to deal with the probability problems. (3) Mathematics literacy: Cultivate probabilistic concepts and problem solving.
The curriculum of this study used the teaching materials designed by our team. The core feature of our method is the role of tree diagram as a consistent probability learning tool for developing concepts of subjective probability, frequentist probability and classical probability. Students reach the level of dealing with the complementary events, and developing a literacy to solve practical problems in life. Also, using DE as a set of methodology for this study, it provides the discipline of instructional design and classroom practice. Although it takes a lot of time to prepare for the materials, it can prevent the research failure and develop the students' participation in the curriculum.
The study found that students who were not taught the probability curriculum, have already contained the spontaneous concept of range of probability values, subjective probability, frequentist probability, and classical probability. The researcher speculated that students might learn the concept of probability from daily experience. After our probability curriculum, it was found that the eighth-grade students had a growth in the post-study test, indicating that students need a systematic teaching of probability, and a few students can even extend to the concept of independence and multiplication, and few students vaguely revealed the concept of conditional probability.
On the other hand, in the students’ writings, this study identifies students’ myths of probability and tree diagram. (1) The concept of ideal value. (2) The sort of sample space. (3) Classification of tree diagram. (4) Probability value of asymmetric events (5) Adding principle and multiplication principle. However, six months later of the probability curriculum, the postponement test was conducted. Compared to the probationary post-test, the students' grades showed a slight improvement indicating that the probability curriculum of the study was quite successful.
In summary, this study suggests that the probability subject can be moved ahead to the eighth-grade, with daily experience as the main content of probability curriculum, and tree diagram as the technical tool for solving the problem. As for the ninth-grade probability curriculum, it may include the concepts of exclusion-or events, independence, and multiplication principle. This study also shows that DE really provides a methodology for mathematics education, especially for the innovation of experimental courses. This study also summarized several difficulties in using DE. It will provide as a reference for educational colleagues who are going to engage in teaching design in the future.
李岳霞(2015)。教孩子堅持不放棄!玩桌遊5大益處。親子天下雜誌電子報,69。取自 http://www.parenting.com.tw/article/506 7838-教孩子堅持不放棄!玩桌遊5大益處/?page=1
林福來(2012)。統計教育研究─人才培育與資訊整合總計畫。行政院國家科學委員會專題研究計畫成果報告(編號:98-2511-S-003-004-M)。臺北市:國立臺灣師範大學。
林福來、單維彰、李源順、鄭章華(2013)。十二年國民基本教育數學領域綱要內容之前導研究報告(計畫編號:NAER-102-06-A-1-02-03-1-12)。新北市:國家教育研究院。
侯采伶(2016)。用桌遊來翻轉學習-以國中數學質數為例。臺灣教育評論月刊,5(5),132-137。
徐右任(2001)。和原住民學童「玩」數學:一個探究數學態度與數學遊戲的質性研究。臺東師院教育研究所碩士論文,未出版,台東市。
教育部(2008)。國民中小學九年一貫課程綱要數學學習領域。取自 http://teach.eje.edu.tw/data/files/class_rules/math.pdf
教育部(2018)。十二年國民基本教育國民中小學暨普通型高級中等學校數學領域課程綱要。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/49/pta_18524_6629744_60029.pdf
許哲毓(2019)。初探教學工法。(投稿中)
許哲毓、單維彰(2018)。數學「不確定性」教材與評量之分析規準。臺灣教育評論月刊,7(10),170-177。取自https://shann.idv.tw/article/zheyu2018.pdf
許哲毓、單維彰、劉柏伸(2016)。樹狀圖在機率教學的應用-臺灣與英國教科書之比較。論文發表於國立臺灣大學舉辦之「第四屆師資培育國際學術研討會」,臺北市。
陳宜良、單維彰、洪萬生、袁媛(2005)。中小學數學科課程綱要評估與發展研究。教育部,臺北市。
陳欣民、劉祥通(2002)。從兒童機率迷思概念之文獻分析談機率單元的教學與課程。科學教育研究與發展季刊,26,40-51。
陳德懷(2011)。數位科技與臺灣未來二十年教學的趨勢。前瞻科技與管理,1(1),1-13。
單維彰、許哲毓(2019)。建構下一代國中階段數學課綱:機率新課程。科技部專題研究成果報告(編號:NSC-107-2511-H-008-001),未出版。
單維彰、許哲毓、陳斐卿(2018)。以學前診測與自由擬題探討九年級學生的自發性機率概念。臺灣數學教育期刊,5(2),39-64。取自http://shann.idv.tw/article/tjme2018.pdf
單維彰、陳斐卿、許哲毓(2017)。以裸測與擬題探討九年級學生的自發性機率概念。科技部專題研究成果報告(編號:NSC-104-2511-S-008-002-MY2),未出版。
詹明峰、張鐵懷(2018)。遊戲學習分析架構。數位學習科技期刊,10(3),1-20。
臺灣PISA國家研究中心(2015)。PISA數學樣本試題。取自 http://pisa.nutn.edu.tw/download/sample_papers/2009/2011_1223_mathematics.pdf。
劉秋木(1996)。國小數學科教學研究。臺北:五南。
Artigue, M. & Perrin-Glorian, M.-J. (1991). Didactic Engineering, Research and Development Tool: some Theoretical Problems linked to this Duality. For the Learning of Mathematics, 11(1), 13-18.
Artigue, M. (1994). Didactic engineering as a framework for the conception of teaching products. In R. Biehler, R.W. Scholz, R. Sträßer & B. Winkelmann (Eds.), Didactics of Mathematics as a Scientific Discipline (pp. 27-39). Dordrecht: Kluwer Academic Publishers.
Artigue, M. (1999). The Teaching and Learning of Mathematics at the University Level. Crucial Questions for Contemporary Research in Education. Notices of the AMS, 46(3), 1377-1385.
Artigue, M. (2000). Didactic engineering and the complexity of learning processes in classroom situations. Communication to MADIF2. Gothembourg.
Artigue, M. (2009). Didactical design in mathematics education. In C. Winslow (Ed.), Nordic Research in Mathematics Education. Proceedingsfrom NORMA08 (p.7 - 16). Rotterdam: Sense Publishers.
Artigue, M. (2014). Didactic engineering in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 159–162). New York: Springer. Available from http://www.springerreference.com/docs/navigation.do?m=Encyclopedia+of+Mathematics+Education+(Humanities%2C+Social+Sciences+and+Law)-book188. Accessed on January 14, 2013.
Artigue, M. (2015). Perspective on design research: The case of didactical engineering. In A. A. Bikner, K. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 467–496). Dordrecht, Heidelberg, New York, London: Springer.
Barquero, B., & Bosch, M. (2015). Didactic engineering as a research methodology: From fundamental situations to study and research paths. In A. Watson & M. Otani (Eds.), Task design in mathematics education. Dordrecht, Heidelberg, New York, London: Springer.
Bognár, K., & Nemetz, T. (1977). On the teaching of probability at secondary level. Educational Studies in Mathematics, 8(4), 399-404. doi: 10.1007/BF00310944
Borovcnik, M., Bentz, H. J., & Kapadia, R. (1991). A probabilistic perspective. In R. Kapadia, & M. Borovcnik (Eds.), Chance encounters: Probability in education (pp. 27-71). Boston, MA: Kluwer Academic Publishers. doi: 10.1007/978-94-011-3532-0_2
Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge: The MIT Press.
Cohen, J., & Hansel, M. (1956). Risk and gambling: The study of subjective probability. London, UK: Longmans, Green & Co.
Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht, The Netherlands: D. Reidel. doi: 10.1007/978-94-010-1858-6
Green, D. R. (1983). A survey of probability concepts in 3000 pupils aged 11-16 years. In D. R. Grey, P. Holmes, V. Barnett, & G. M. Constable (Eds.), Proceedings of the First International Conference on Teaching Statistics (pp. 766-783). Shefield, UK: Teaching Statistics Trust.
Herbst, P. & Kilpatrick, J. (1999). Pour lire Brousseau. For the Learning of Mathematics, 19(1), 3-10.
Konold, C. (1991). Understanding students' beliefs about probability. In E. von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 139-156). Dordrecht, The Netherlands: Kluwer Academic Publishers . doi: 10.1007/0-306-47201-5_7
Piaget, J., & Inhelder, B. (1975). The origin of the idea of chance in children (L. J. Leake, P. D. Burrell, & H. D. Fischbein, Trans.). London, UK: Routledge & Kegan Paul. (Original work published 1951)
Shaughnessy, J. M. (1992). Research in probability and statistics: Reflections and directions. In D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning : A project of the National Council of Teachers of Mathematics (pp. 465-494).New York: National Council of Teachers of Mathematics and MacMillan.
Warfield, V. (2006). Invitation to Didactique. Seattle: University of Washington.