跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張淳輔
Chun-Fu Chang
論文名稱: 雙馬來醯亞胺與磺酸化苯基馬來醯亞胺共聚物改質之質子交換膜
1,1’-(Methylenedi-4,1-phenylene) bismaleimide/Sulfonated N-phenylmaleimide copolymer composite sPEEK and Nafion proton exchange membranes for fuel cell
指導教授: 諸柏仁
Po-Jen Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 98
語文別: 中文
論文頁數: 97
中文關鍵詞: 半互穿高分子網絡質子交換膜雙馬來醯亞胺
外文關鍵詞: Semi-IPN, 1-phenylene) bismaleimide, 1''-(Methylenedi-4, 1, sulfonated N-Phenylmaleimide
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般燃料電池的質子傳導薄膜在應用上最常碰到的問題為在低濕度環境下薄膜保存水的能力不足,導致傳遞質子的水分喪失,進而使得質子導電度下降;另一個問題是質子交換膜應用於直接甲醇燃料電池中時,薄膜有嚴重的甲醇滲透現象,導致在陰極產生混合電位降低電池整體的性能表現。
    本研究帶有磺酸根的高分歧結構高分子加入薄膜後,可同時提昇薄膜的質子導電度和大幅降低甲醇滲透率。利用雙馬來醯亞胺(1,1’-(Methylenedi-4,1-phenylene) bismaleimide, BMI)與磺酸化N-苯基馬來醯亞胺(sulfonated N-Phenylmaleimide, sPMI)之共聚高分子與Nafion及磺酸化聚二醚酮(sulfonated poly ether ether ketone, sPEEK)製成複合薄膜, sPMI所帶有的磺酸根增進薄膜的導電度以及藉由高歧狀型態的BMI形成半互穿網絡 (semi-Interpenetrating Polymer Network, semi-IPN) 結構降低甲醇滲透,並以不同的BMI與sPMI比例,調控共聚高分子的型態,製備出能降低甲醇滲透但也有好的質子導電度表現的複合薄膜。
    由實驗得知,在BMI : sPMI = 1 : 4時所製備的薄膜,無論在sPEEK薄膜或是Nafion薄膜上,都能有效的降低甲醇的滲透。在20%1B4P的sPEEK薄膜其甲醇滲透可達10-7cm2/s;Nafion方面,N-1B4P-24hr薄膜甲醇滲透也能降低至純Nafion的三分之一。而在質子導電度方面,10%1B1P的sPEEK薄膜在100℃時的變濕導電度也高於原本的sPEEK薄膜;在Nafion薄膜中,除了sPMI比例較低的N-4B1P-6hr及N-4B1P-24hr兩薄膜在100℃時的變濕導電度較不及純Nafion外,其他4種組成的薄膜則是優於純Nafion薄膜。而其他如離子交換容量(Ion Exchange Capacity, IEC)、水含量(Water uptake)及熱穩定性等性質,在本篇論文中皆有加以探討、比較。


    The most common problems of the fuel cell membranes are the insufficient of the ability to retain water at low humidity that result in the low proton conductivity and on the other hand, the high methanol permeability that deduces the performance of the fuel cell. Because of the morphology of the water channel, the most commonly used commercial Nafion membrane has high rate of soaking and losing water. Therefore, the proton conductivity of Nafion membranes is pretty low under ambient condition. On the other hand, the hydrocarbon proton conducting membranes may have lower proton permeability but the proton conductivity may not be good enough compared to Nafion membrane.
    This research introduce the hyperbranch copolymer with sulfonic groups into membranes can promote proton conductivity and reduce methanol permeability simultaneously. We use the copolymer of 1,1’-(Methylenedi-4,1-phenylene) bismaleimide (BMI) and sulfonated N-Phenylmaleimide (sPMI) into Nafion and sulfonated poly ether ether ketone (sPEEK). The proton conductivity will increase by the sulfonic groups of the sPMI and the methanol permeability will decrease by the formation of semi-IPN (semi-Interpenetrating Polymer Network) structure of BMI. The different ration between BMI and sPMI can adjust the structure of semi-IPN in order to prepare an organic/organic composite membrane that has high proton conductivity under low humidity and high methanol resistant ability.
    According to the data, we know that while the ratio between BMI and sPMI is 1 : 4, the methanol permeability is effectively decreased in spite of sPEEK and Nafion membranes. The methanol permeability of 20%1B4P sPEEK membrane can reach 10-7cm2/s and N-1B4P-24hr membrane can deduce 1/3 compared to the pure Nafion. The proton conductivity of 10%1B1P sPEEK membrane is higher than pure sPEEK under 100℃ and various humidity. On the other side, except the N-4B1P-6hr and N-4B1P-24hr with fewer sulfonic groups, the proton conductivity of the rest 4 membranes with different composition are better than pure Nafion under 100℃ and various humidity. The Ion Exchange Capacity (IEC), water uptake and the thermal stability are also discussed in the research.

    目錄 頁次 中文摘要 .................................................................................................................................... I Abstract .................................................................................................................................... II 謝誌 ....................................................................................................................................... IV 圖目錄 ................................................................................................................................ VIII 表目錄 ................................................................................................................................... XI 第一章. 緒論 .............................................................................................................................. 1 1-1 前言 ............................................................................................................................ 1 1-2 研究動機 .................................................................................................................... 3 第二章. 文獻回顧 ...................................................................................................................... 5 2-1 燃料電池原理與簡介 ................................................................................................. 5 2-2 有機/無機複合薄膜 .................................................................................................... 8 2-2-1 無機物修飾之全氟化Nafion 複合膜 ............................................................ 8 2-2-2 無機物修飾之非全氟化複合膜 ................................................................... 11 2-3 有機/有機複合薄膜 ................................................................................................... 14 2-3-1 有機物修飾之全氟化Nafion 複合膜 .......................................................... 14 2-3-2 有機物修飾之非全氟化複合膜 ................................................................... 16 2-4 甲醇滲透抑制機制 ................................................................................................... 16 2-5 互穿高分子網絡(Interpenetrating Polymer Network, IPN)..................................... 19 2-5-1 簡介 ............................................................................................................... 19 2-5-2 互穿高分子網絡形成方法 ........................................................................... 20 2-5-3 互穿高分子網絡之表面型態 ....................................................................... 21 2-5-4 Semi-IPN 與薄膜性質的關聯 ....................................................................... 22 第三章. 實驗方法 .................................................................................................................... 25 3-1 實驗藥品 .................................................................................................................... 25 3-2 樣品製備 .................................................................................................................. 27 3-2-1 聚二醚酮高分子磺酸化 ............................................................................... 27 3-2-2 磺酸化N-苯基馬來醯亞胺的合成 .............................................................. 27 3-2-3 雙馬來醯亞胺與磺酸化N-苯基馬來醯亞胺共聚高分子合成 .................. 28 3-2-4 雙馬來醯亞胺、磺酸化N-苯基馬來醯亞胺共聚物與磺酸化聚二醚酮混摻 之高分子質子交換薄膜製程 .................................................................................. 29 3-2-5 杜邦商業化薄膜Nafion117 (212)之前處理 ................................................ 30 3-2-6 以馬來醯亞胺、磺酸化N-苯基馬來醯亞胺共聚物修飾之Nafion117 (212) 高分子質子交換薄膜製程 ...................................................................................... 30 3-3 實驗量測與樣品前處理步驟 ........................................................................... 31 3-3-1 水分、溶劑吸附量(Water Uptake, Solvent Uptake) .................................... 31 3-3-2 甲醇滲透率(Methanol Permeability) ............................................................ 31 3-3-3 離子交換容量(Ion Exchange Capacity, IEC) ................................................ 32 3-3-4 質子導電度 .................................................................................................... 33 3-3-5 濕度控制模組原理 ........................................................................................ 33 3-3-6 示差掃描熱卡計(Differential Scanning Calorimeter, DSC) .......................... 34 3-3-7 熱重分析儀(Thermogravimetry Analysis, TGA) ........................................... 36 3-3-8 甲醇燃料電池效能測詴 ................................................................................ 36 第四章. 結果與討論 ................................................................................................................ 38 4-1 結構鑑定 ................................................................................................................... 40 4-1-1 sPEEK 之結構鑑定 ........................................................................................ 40 4-1-2 BMI-sPMI 共聚物之結構鑑定 ...................................................................... 41 4-4 sPEEK 複合薄膜 ....................................................................................................... 47 4-4-1 相容性(Miscibility) ....................................................................................... 47 4-4-2 熱穩定性(thermal stability) ........................................................................... 49 4-4-3 離子交換容量(IEC) ...................................................................................... 51 4-4-4 吸水量(water uptake) .................................................................................... 52 4-4-5 質子導電度(proton conductivity) ................................................................. 53 4-4-6 甲醇滲透率(methanol permeability) ............................................................. 57 4-5 Nafion117 複合薄膜 .................................................................................................. 59 4-5-1 複合膜內之BMI-sPMI 含量 ........................................................................ 59 4-5-2 相容性(Miscibility) ....................................................................................... 60 4-5-3 熱穩定性(thermal stability) ........................................................................... 62 4-5-4 離子交換容量(IEC) ...................................................................................... 63 4-5-5 吸水量(water uptake) .................................................................................... 65 4-5-6 質子導電度(proton conductivity) ................................................................. 66 4-5-7 甲醇滲透率(methanol permeability) ............................................................. 68 4-5-8 N117 複合薄膜之表面型態(Morphology) .................................................... 70 4-5-9 直接甲醇燃料電池效能測詴 ....................................................................... 71 4-5 Nafion212 複合薄膜 .................................................................................................. 74 4-5-1 甲醇滲透率(methanol permeability) ............................................................. 75 4-5-2 直接甲醇燃料電池效能測詴 ........................................................................ 75 第五章. 結論與未來展望 ........................................................................................................ 79 第六章. 參考文獻 .................................................................................................................... 81

    [1] Grove, W. R., Philos. Mag. Ser. 1839, 3, 14, 127.
    [2] Smitha, B.; Sridhar, S.; Khan, A. A., "Solid polymer electrolyte membranes for fuel cell
    applications--a review" J. Membr. Sci. 2005, 259, 1-2, 10.
    [3] Watanabe M., Uchida H., Seki Y., Emori M., The Electrochemical Society Meeting,
    PV94-2, Abstract No.606, Electrochemical Society: Pennington, NJ, 1994, pp946-947.
    [4] Mauritz, K. A. Mater. Sci. Eng., C 6 (1998) 121.
    [5] Miyake, N. Wainwright, J.S. Savinell, R.F., J. Electrochemical Society. 148 (2001) A898.
    [6] Xu, K.; Chanthad, C.; Gadinski, M. R.; Hickner, M. A.; Wang, Q., "Acid-Functionalized
    Polysilsesquioxane−Nafion Composite Membranes with High Proton Conductivity and
    Enhanced Selectivity" Appl. Mater. Interfaces 2009, 1, 11, 2573.
    [7] Park, K. T.; Jung, U. H.; Choi, D. W.; Chun, K.; Lee, H. M.; Kim, S. H.,
    "ZrO2-SiO2/Nafion® composite membrane for polymer electrolyte membrane fuel cells
    operation at high temperature and low humidity" J. Power Sources 2008, 177, 2, 247.
    [8] Saccà, A.; Gatto, I.; Carbone, A.; Pedicini, R.; Passalacqua, E., "ZrO2-Nafion composite
    membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature" J.
    Power Sources 2006, 163, 1, 47.
    [9] Jalani, N. H.; Dunn, K.; Datta, R., "Synthesis and characterization of Nafion® -MO2
    (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells"
    Electrochim. Acta 2005, 51, 3, 553.
    [10] Zeng, R.; Wang, Y.; Wang, S.; Shen, P. K., "Homogeneous synthesis of PFSI/silica
    composite membranes for PEMFC operating at low humidity" Electrochim. Acta 2007, 52,
    12, 3895.
    [11] Zhai, Y.; Zhang, H.; Hu, J.; Yi, B., "Preparation and characterization of sulfated zirconia
    (SO42-/ZrO2)/Nafion composite membranes for PEMFC operation at high
    temperature/low humidity" J. Membr. Sci. 2006, 280, 1-2, 148.
    [12] Hara, S.; Miyayama, M., "Proton conductivity of superacidic sulfated zirconia" Solid
    State Ionics 2004, 168, 1-2, 111.
    [13] Thampan, T. M.; Jalani, N. H.; Choi, P.; Datta, R., "Systematic Approach to Design
    Higher Temperature Composite PEMs" J. Electrochem. Soc. 2005, 152, 2, A316.
    [14] Staiti, P.; Minutoli, M.; Hocevar, S., "Membranes based on phosphotungstic acid and
    polybenzimidazole for fuel cell application" J. Power Sources 2000, 90, 2, 231.
    [15] Staiti, P.; Minutoli, M., "Influence of composition and acid treatment on proton
    conduction of composite polybenzimidazole membranes" J. Power Sources 2001, 94, 1, 9.
    [16] Staiti, P., "Proton conductive membranes based on silicotungstic acid/silica and
    polybenzimidazole" Mater. Lett. 2001, 47, 4-5, 241.
    [17] Honma, I.; Takeda, Y.; Bae, J. M., "Protonic conducting properties of sol-gel derived
    organic/inorganic nanocomposite membranes doped with acidic functional molecules"
    Solid State Ionics 1999, 120, 1-4, 255.
    [18] Honma, I.; Nomura, S.; Nakajima, H., "Protonic conducting organic/inorganic
    nanocomposites for polymer electrolyte membrane" J. Membr. Sci. 2001, 185, 1, 83.
    [19] Amarilla, J. M.; Rojas, R. M.; Rojo, J. M.; Cubillo, M. J.; Linares, A.; Acosta, J. L.,
    "Antimonic acid and sulfonated polystyrene proton-conducting polymeric composites"
    Solid State Ionics 2000, 127, 1-2, 133.
    [20] Bonnet, B., Jones, D. J., Roziere, J., Tchicaya, L., Alberti, G., Casciola, M. Massinelli, L.,
    Baner, B., Peraio, A., Ramunni, E. “Electrochemical characterisation of sulfonated
    polyetherketone membranes”; J. New Mater. Electrochem. Syst. 2000, 3, 87.
    [21] Zaidi, S. M. J.; Mikhailenko, S. D.; Robertson, G. P.; Guiver, M. D.; Kaliaguine, S.,
    "Proton conducting composite membranes from polyether ether ketone and
    heteropolyacids for fuel cell applications" J. Membr. Sci. 2000, 173, 1, 17.
    [22] Nunes, S. P.; Ruffmann, B.; Rikowski, E.; Vetter, S.; Richau, K., "Inorganic modification
    of proton conductive polymer membranes for direct methanol fuel cells" J. Membr. Sci.
    2002, 203, 1-2, 215.
    [23] Kaliaguine, S.; Mikhailenko, S. D.; Wang, K. P.; Xing, P.; Robertson, G.; Guiver, M.,
    "Properties of SPEEK based PEMs for fuel cell application" Catal. Today 2003, 82, 1-4,
    213.
    [24] Rozie´re, J., Jones, D. J., Tchicaya-Bouckary, L., Bauer, B. WO 02/05370, 2000.
    [25] Marani, D.; D’Epifanio, A.; Traversa, E.; Miyayama, M.; Licoccia, S., "Titania
    Nanosheets (TNS)/Sulfonated Poly Ether Ether Ketone (SPEEK) Nanocomposite Proton
    Exchange Membranes for Fuel Cells†" Chem. Mater. 2009, 22, 3, 1126.
    [26] Jones, D. J.; Roziere, “Advances in the Development of Inorganic–Organic Membranes
    for Fuel Cell Applications” J. Adv. Polym. Sci. 2008, 215, 219–264.
    [27] Einsla, M. L.; Kim, Y. S.; Hawley, M.; Lee, H.-S.; McGrath, J. E.; Liu, B.; Guiver, M.
    D.; Pivovar, B. S. “Toward Improved Conductivity of Sulfonated Aromatic Proton
    Exchange Membranes at Low Relative Humidity”Chem. Mater. 2008, 20, 5636.
    [28] Kim, T. W.; Sahimi, M.; Tsotsis, T. T., "Preparation and Characterization of Hybrid
    Hydrotalcite-Sulfonated Polyetheretherketone (SPEEK) Cation-Exchange Membranes"
    Ind. Eng. Chem. Res. 2009, 48, 21, 9504.
    [29] Lee, K.; Nam, J. H.; Lee, J. H.; Lee, Y.; Cho, S. M.; Jung, C. H.; Choi, H. G.; Chang, Y.
    Y.; Kwon, Y. U.; Nam, J. D., "Methanol and proton transport control by using layered
    double hydroxide nanoplatelets for direct methanol fuel cell" Electrochem. Commun.
    2005, 7, 1, 113.
    [30] Lee, K.; Nam, J. D., "Optimum ionic conductivity and diffusion coefficient of
    ion-exchange membranes at high methanol feed concentrations in a direct methanol fuel
    cell" J. Power Sources 2006, 157, 1, 201.
    [31] Decker, B.; Hartmann-Thompson, C.; Carver, P. I.; Keinath, S. E.; Santurri, P. R.,
    "Multilayer Sulfonated Polyhedral Oligosilsesquioxane (S-POSS)-Sulfonated
    Polyphenylsulfone (S-PPSU) Composite Proton Exchange Membranes†" Chem. Mater.
    2009, 22, 3, 942.
    [32] Hartmann-Thompson, C.; Merrington, A.; Carver, P. I.; Keeley, D. L.; Rousseau, J. L.;
    Hucul, D.; Bruza, K. J.; Thomas, L. S.; Keinath, S. E.; Nowak, R. M.; Katona, D. M.;
    Santurri, P. R., "Proton-conducting polyhedral oligosilsesquioxane nanoadditives for
    sulfonated polyphenylsulfone hydrogen fuel cell proton exchange membranes" J. Appl.
    Polym. Sci. 2008, 110, 2, 958.
    [33] Sun, J.; Jordan, L. R.; Forsyth, M.; MacFarlane, D. R., "Acid-Organic base swollen
    polymer membranes" Electrochim. Acta 2001, 46, 10-11, 1703.
    [34] Fu, Y.-Z.; Manthiram, A., "Nafion--Imidazole--H3PO4Composite Membranes for Proton
    Exchange Membrane Fuel Cells" J. Electrochem. Soc. 2007, 154, 1, B8.
    [35] Deimede, V.; Voyiatzis, G. A.; Kallitsis, J. K.; Qingfeng, L.; Bjerrum, N. J., "Miscibility
    Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell
    Applications" Macromolecules 2000, 33, 20, 7609.
    [36] Qingfeng, L.; Hjuler, H. A.; Bjerrum, N. J., "Phosphoric acid doped polybenzimidazole
    membranes: Physiochemical characterization and fuel cell applications" J. Appl.
    Electrochem. 2001, 31, 7, 773.
    [37] Felice, C.; Ye, S.; Qu, D., "Nafion−Montmorillonite Nanocomposite Membrane for the
    Effective Reduction of Fuel Crossover" Ind. Eng. Chem. Res. 2010, 49, 4, 1514.
    [38]Ladewig, B. P.; Knott, R. B.; Hill, A. J.; Riches, J. D.; White, J. W.; Martin, D. J.; Diniz
    da Costa, J. C.; Lu, G. Q., "Physical and Electrochemical Characterization of Nanocomposite Membranes of Nafion and Functionalized Silicon Oxide" Chem. Mater. 2007, 19, 9, 2372.
    [39] Lee, K.-S.; Jeong, M.-H.; Lee, J.-P.; Lee, J.-S., "End-Group Cross-Linked Poly(arylene
    ether) for Proton Exchange Membranes" Macromolecules 2009, 42, 3, 584.
    [40] 侯勝澍,「含交聯矽氧烷高分子摻合物之製備與其物性之研究」,國立成功大學,
    博士論文,民國九十年。
    [41] Mishra, S.; Bajpai, R.; Katare, R.; Bajpai, A., "On the mechanical strength of
    biocompatible semi-IPNs of polyvinyl alcohol and polyacrylamide" Microsyst. Technol.
    2008, 14, 2, 193.
    [42] Lee, S.; Jang, W.; Choi, S.; Tharanikkarasu, K.; Shul, Y.; Han, H., "Sulfonated
    polyimide and poly (ethylene glycol) diacrylate based semi-interpenetrating polymer
    network membranes for fuel cells" J. Appl. Polym. Sci. 2007, 104, 5, 2965.
    [43] Qiao, J.; Ikesaka, S.; Saito, M.; Kuwano, J.; Okada, T., "Life test of DMFC using
    poly(ethylene glycol)bis(carboxymethyl)ether plasticized PVA/PAMPS
    proton-conducting semi-IPNs" Electrochem. Commun. 2007, 9, 8, 1945.
    [44] Wu, H.-L.; Ma, C.-C. M.; Kuan, H.-C.; Wang, C.-H.; Chen, C.-Y.; Chiang, C.-L.,
    "Sulfonated poly(ether ether ketone)/poly(vinylpyrrolidone) acid-base polymer blends for
    direct methanol fuel cell application" J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 3,
    565.
    [45] Malmstroem, E.; Johansson, M.; Hult, A., "Hyperbranched Aliphatic Polyesters"
    Macromolecules 1995, 28, 5, 1698.

    QR CODE
    :::