跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴睬淳
Cai-Chun Lai
論文名稱: 以系統動態與貝氏網路探討地表水與地下水的聯合管理策略
Investigating Conjunctive Management Strategies of Surface water and Groundwater by using System Dynamics and Bayesian Networks
指導教授: 林遠見
Yuan-Chien Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 128
中文關鍵詞: 地下水水資源水資源管理貝氏網路系統動態
外文關鍵詞: groundwater, water resources, water resources management, Bayesian networks, system dynamics
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來受西北太平洋副熱帶高壓增強的影響,台灣乾旱發生的機率變得頻繁。為了解決因乾旱而造成的經濟與社會損失,合理並永續利用相對穩定的地下水資源成為重要議題。從觀測資料與過去的文獻中發現兩點,一是地下水補充會因含水層的飽和而減緩,二是台灣周邊存在海底地下水排放的現象,造成淡水資源的浪費。因此本研究運用系統動態模型模擬地下水側流的日資料,與建立貝氏網路模型探討研究區域的地下水管理方法,有效發現過去常被人們忽視的地下水管理問題。
    有別於以往文獻,僅模擬地下水的季尺度或月尺度資料,本研究利用基於水筒模型建立的系統動態模型,模擬出地下水側流的日資料,並利用2014年至2022年的平均地下蓄水量水文歷線圖驗證地下水側流日資料的合理性。最後將地下水側流的模擬值與其他觀測資料輸入進貝氏網路模型中,結果顯示當地下水位越高時,地下水的側向淨流入量越少,證明了地下水補充確實會因為含水層的飽和而逐漸減緩。
    另外,在貝氏網路的結果中,假設在乾季與中等降雨的情況下,地下水保持在中等水位,與高等及低等相比,會有較低的流出機率和較高流入機率。而假設在雨季與中等降雨的情況下,地下水保持在低等水位,會使得地下水補充有更好的表現。因此,本研究建議在雨季來臨前將地下水保持在低等水位,讓雨季時的降雨可以更好地補充到地下水,而在雨季結束時將地下水保持在中等水位。這種方法不同於以往雨季時先使用地表水,直到乾季時才尋求地下水的水資源管理方式。本研究建議在雨季來臨時先使用地下水資源,直到乾季地下水達到中等水位時,再使用地表水,讓淡水資源得到更好地利用。


    In recent years, the frequency of droughts in Taiwan has increased due to the strengthening of the subtropical high pressure over the Northwest Pacific. To address the economic and social losses caused by droughts, the rational and sustainable use of relatively stable groundwater resources has become an important issue. From observation data and past literature, two points have been identified: first, groundwater recharge slows down due to the saturation of aquifers, and second, there is a phenomenon of submarine groundwater discharge around Taiwan, leading to the wastage of freshwater resources. Therefore, this study employs a system dynamics model to simulate daily data of groundwater lateral flow and establishes a Bayesian Network model to explore groundwater management methods in the study area, focusing on aspects often overlooked in past groundwater management.
    Unlike previous studies that only simulated seasonal or monthly scale groundwater data, this study uses a System Dynamics model based on the tank model to simulate daily data of groundwater lateral flow. The reasonableness of the daily groundwater lateral flow data is verified using the observation average groundwater storage hydrograph from 2014 to 2022. Finally, the simulated values of groundwater lateral flow and other observation data are input into the Bayesian Network model. The results show that the higher the groundwater level, the less the net inflow of lateral groundwater, confirming that groundwater recharge indeed slows down due to the saturation of aquifers.
    Additionally, in the results of the Bayesian network, assuming the groundwater level is maintained at a medium level during the dry season with moderate rainfall, compared to a low or high level, has a lower probability of outflow and a higher probability of inflow. Conversely, assuming the groundwater level is maintained at a low level during the rainy season with moderate rainfall, groundwater recharge performs better. Therefore, this study suggests maintaining a low groundwater level before the rainy season arrives to maximize groundwater recharge during the rainy season. After the rainy season ends, the groundwater level should be maintained at a medium level. In other words, this approach differs from the traditional water resource management method, which uses surface water first during the rainy season and then seeks groundwater during the dry season. This study recommends using groundwater resources first when the rainy season arrives. Once the groundwater reaches a moderate level during the dry season, surface water should then be utilized to ensure better use of freshwater resources.

    摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究問題與目的 5 1-3 論文架構 7 第二章 文獻回顧 9 2-1 地表與地下水資源聯合運用 9 2-2 台灣地區降雨與地下水資源研究 12 2-3 資料科學應用於聯合水管理 14 2-4 系統動態(System Dynamics, SD) 16 2-5 貝氏網路(Bayesian Networks, BN) 18 第三章 研究方法 20 3-1 研究架構 20 3-2 研究區域概述 22 3-3 資料蒐集與描述 25 3-4 水筒模型(Tank model) 29 3-5 徑向基底函數網路 (Radial Basis Function Network, RBF) 31 3-6 系統動態 33 3-7 貝氏網路 35 第四章 結果分析 37 4-1 系統動態模型 37 4-1-1 研究區域的水筒模型 37 4-1-2 系統動態模型的建立 38 4-1-3 模型驗證 53 4-2 貝氏網路 56 4-2-1 貝氏網路模型 56 4-2-2 貝氏網路模型之探討 62 第五章 討論與結論 67 5-1 結論 67 5-2 討論 68 5-3 研究建議 70 參考文獻 71 附錄一 83 附錄二 113 評審意見回覆表 115

    Abate, B. Z., Assefa, T. T., Tigabu, T. B., Abebe, W. B., & He, L. (2023). Hydrological Modeling of the Kobo-Golina River in the Data-Scarce Upper Danakil Basin, Ethiopia. Sustainability, 15(4), 3337.
    Agency, W. R. (2011). Flood and Drought Mitigation Annual Report.
    Barlas, Y. (2007). System dynamics: systemic feedback modeling for policy analysis. System, 1(59), 1-68.
    Barlow, P. M., & Harbaugh, A. W. (2006). USGS directions in MODFLOW development. Ground Water, 44(6), 771-774.
    Barua, S., Gao, X., Pasman, H., & Mannan, M. S. (2016). Bayesian network based dynamic operational risk assessment. Journal of Loss Prevention in the Process Industries, 41, 399-410. https://doi.org/https://doi.org/10.1016/j.jlp.2015.11.024
    Bastin, G., Lorent, B., Duque, C., & Gevers, M. (1984). Optimal estimation of the average areal rainfall and optimal selection of rain gauge locations. Water resources research, 20(4), 463-470.
    Batchelor, C., & Cain, J. (1999). Application of belief networks to water management studies. Agricultural Water Management, 40(1), 51-57. https://doi.org/https://doi.org/10.1016/S0378-3774(98)00103-6
    Bergström, S. (1976). Development and application of a conceptual runoff model for Scandinavian catchments.
    Bierkens, M. F. (2015). Global hydrology 2015: State, trends, and directions. Water resources research, 51(7), 4923-4947.
    Bovolo, C. I., Parkin, G., & Sophocleous, M. (2009). Groundwater resources, climate and vulnerability. Environmental Research Letters, 4(3), 035001.
    Brown, T. C., Mahat, V., & Ramirez, J. A. (2019). Adaptation to Future Water Shortages in the United States Caused by Population Growth and Climate Change. Earth's Future, 7(3), 219-234. https://doi.org/https://doi.org/10.1029/2018EF001091
    Castro, M. C., & Goblet, P. (2003). Calibration of regional groundwater flow models: Working toward a better understanding of site-specific systems. Water resources research, 39(6). https://doi.org/https://doi.org/10.1029/2002WR001653
    Cavana, R. Y., & Clifford, L. V. (2006). Demonstrating the utility of system dynamics for public policy analysis in New Zealand: the case of excise tax policy on tobacco. System Dynamics Review: The Journal of the System Dynamics Society, 22(4), 321-348.
    Chang, F.-J., Huang, C.-W., Cheng, S.-T., & Chang, L.-C. (2017). Conservation of groundwater from over-exploitation—Scientific analyses for groundwater resources management. Science of The Total Environment, 598, 828-838.
    Chen, C.-T. A., Zhang, J., Peng, T.-R., Kandasamy, S., Wang, D., & Lin, Y.-J. (2018). Submarine groundwater discharge around Taiwan. Acta Oceanologica Sinica, 37, 18-22.
    Chen, H.-Y., Yeh, H.-F., Ke, C.-C., Yang, Y.-S., & Huang, C.-C. (2024). Deciphering inter-catchment groundwater flow: A water balance perspective in the Choshui River Basin, Taiwan. Journal of Hydrology: Regional Studies, 53, 101742. https://doi.org/https://doi.org/10.1016/j.ejrh.2024.101742
    Chen, W.-P., & Lee, C.-H. (2003). Estimating ground-water recharge from streamflow records. Environmental Geology, 44, 257-265.
    Chen, X., Zhou, T., Wu, P., Guo, Z., & Wang, M. (2020). Emergent constraints on future projections of the western North Pacific Subtropical High. Nature communications, 11(1), 2802.
    Cheng, H.-H., Yu, W.-S., Tseng, S.-C., Wu, Y.-J., Hsieh, C.-L., Lin, S.-S., Chu, C.-P., Huang, Y.-D., Chen, W.-R., & Lin, T.-F. (2023). Reclaimed water in Taiwan: current status and future prospects. Sustainable Environment Research, 33(1), 16.
    Chow, V. T., & Kulandaiswamy, V. (1971). General hydrologic system model. Journal of the Hydraulics Division, 97(6), 791-804.
    Commission, N. W. (2011). The National Water Initiative-securing Australia's water future.
    Dang, M.-Q., Wang, S.-J., Fu, C.-C., & Truong, H.-D. (2024). Coastal flowing artesian wells and submarine groundwater discharge driven by tidal variation at TaiCOAST site in Taoyuan, Taiwan. Journal of Hydrology: Regional Studies, 52, 101708. https://doi.org/https://doi.org/10.1016/j.ejrh.2024.101708
    De Wrachien, D., & Fasso, C. A. (2002). Conjunctive use of surface and groundwater: overview and perspective. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage, 51(1), 1-15.
    Dewandel, B., Gandolfi, J. M., De Condappa, D., & Ahmed, S. (2008). An efficient methodology for estimating irrigation return flow coefficients of irrigated crops at watershed and seasonal scale. Hydrological Processes: An International Journal, 22(11), 1700-1712.
    Docker, B., & Robinson, I. (2014). Environmental water management in Australia: experience from the Murray-Darling Basin. International Journal of Water Resources Development, 30(1), 164-177.
    Driessen, T., Hurkmans, R., Terink, W., Hazenberg, P., Torfs, P., & Uijlenhoet, R. (2010). The hydrological response of the Ourthe catchment to climate change as modelled by the HBV model. Hydrology and Earth System Sciences, 14(4), 651-665.
    Fazio, V. S., & Roisenberg, M. (2013). Spatial interpolation: an analytical comparison between kriging and RBF networks. Proceedings of the 28th Annual ACM Symposium on Applied Computing,
    Fienen, M. N., Masterson, J. P., Plant, N. G., Gutierrez, B. T., & Thieler, E. R. (2013). Bridging groundwater models and decision support with a Bayesian network. Water resources research, 49(10), 6459-6473.
    Finch, J. W. (1998). Estimating direct groundwater recharge using a simple water balance model – sensitivity to land surface parameters. Journal of hydrology, 211(1), 112-125. https://doi.org/https://doi.org/10.1016/S0022-1694(98)00225-X
    Forrester, J. W. (1971). Counterintuitive behavior of social systems. Theory and decision, 2(2), 109-140.
    Fumikazu, N., Toshisuke, M., Yoshio, H., Hiroshi, T., & Kimihito, N. (2013). Evaluation of water resources by snow storage using water balance and tank model method in the Tedori River basin of Japan. Paddy and Water Environment, 11, 113-121.
    Furman, A. (2008). Modeling coupled surface–subsurface flow processes: a review. Vadose Zone Journal, 7(2), 741-756.
    Gleeson, T., Wada, Y., Bierkens, M. F. P., & van Beek, L. P. H. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197-200. https://doi.org/10.1038/nature11295
    Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine learning, 20, 197-243.
    Heesterbeek, H., Anderson, R. M., Andreasen, V., Bansal, S., De Angelis, D., Dye, C., Eames, K. T. D., Edmunds, W. J., Frost, S. D. W., Funk, S., Hollingsworth, T. D., House, T., Isham, V., Klepac, P., Lessler, J., Lloyd-Smith, J. O., Metcalf, C. J. E., Mollison, D., Pellis, L., . . . Isaac Newton Institute, I. D. D. C. (2015). Modeling infectious disease dynamics in the complex landscape of global health. Science, 347(6227), aaa4339. https://doi.org/10.1126/science.aaa4339
    Homer, J., Ritchie‐Dunham, J., Rabbino, H., Puente, L. M., Jorgensen, J., & Hendricks, K. (2000). Toward a dynamic theory of antibiotic resistance. System Dynamics Review: The Journal of the System Dynamics Society, 16(4), 287-319.
    Hong, N., Hama, T., Suenaga, Y., Aqili, S. W., Huang, X., Wei, Q., & Kawagoshi, Y. (2016). Application of a modified conceptual rainfall–runoff model to simulation of groundwater level in an undefined watershed. Science of The Total Environment, 541, 383-390. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.09.026
    Horne, J. (2013). Economic approaches to water management in Australia. International Journal of Water Resources Development, 29(4), 526-543.
    Hsu, K.-C., Wang, C.-H., Chen, K.-C., Chen, C.-T., & Ma, K.-W. (2007). Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeology Journal, 15(5), 903-913. https://doi.org/10.1007/s10040-006-0137-x
    Hsu, Y.-J., Fu, Y., Bürgmann, R., Hsu, S.-Y., Lin, C.-C., Tang, C.-H., & Wu, Y.-M. (2020). Assessing seasonal and interannual water storage variations in Taiwan using geodetic and hydrological data. Earth and Planetary Science Letters, 550, 116532. https://doi.org/https://doi.org/10.1016/j.epsl.2020.116532
    Hung, W. (2008). Enhancing systems-thinking skills with modelling. British Journal of Educational Technology, 39(6), 1099-1120. https://doi.org/https://doi.org/10.1111/j.1467-8535.2007.00791.x
    Jan, C.-D., Chen, T.-H., & Lo, W.-C. (2007). Effect of rainfall intensity and distribution on groundwater level fluctuations. Journal of hydrology, 332(3), 348-360. https://doi.org/https://doi.org/10.1016/j.jhydrol.2006.07.010
    Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge university press.
    Jensen, F. V., & Nielsen, T. D. (2007). Bayesian networks and decision graphs (Vol. 2). Springer.
    Jones, B., Jenkinson, I., Yang, Z., & Wang, J. (2010). The use of Bayesian network modelling for maintenance planning in a manufacturing industry. Reliability Engineering & System Safety, 95(3), 267-277. https://doi.org/https://doi.org/10.1016/j.ress.2009.10.007
    Joodavi, A., Izady, A., Maroof, M. T. K., Majidi, M., & Rossetto, R. (2020). Deriving optimal operational policies for off-stream man-made reservoir considering conjunctive use of surface-and groundwater at the Bar dam reservoir (Iran). Journal of Hydrology: Regional Studies, 31, 100725.
    Khaki, M., Yusoff, I., & Islami, N. (2015). Simulation of groundwater level through artificial intelligence system. Environmental Earth Sciences, 73(12), 8357-8367. https://doi.org/10.1007/s12665-014-3997-8
    Khan, S., Yufeng, L., & Ahmad, A. (2009). Analysing complex behaviour of hydrological systems through a system dynamics approach. Environmental modelling & software, 24(12), 1363-1372. https://doi.org/https://doi.org/10.1016/j.envsoft.2007.06.006
    Khosbayar, A., Valluru, J., & Huang, B. (2021). Multi-rate Gaussian Bayesian network soft sensor development with noisy input and missing data. Journal of Process Control, 105, 48-61. https://doi.org/https://doi.org/10.1016/j.jprocont.2021.07.003
    Kim, H. K., Jang, T. I., Im, S. J., & Park, S. W. (2009). Estimation of irrigation return flow from paddy fields considering the soil moisture. Agricultural Water Management, 96(5), 875-882. https://doi.org/https://doi.org/10.1016/j.agwat.2008.11.009
    Kobold, M., & Brilly, M. (2006). The use of HBV model for flash flood forecasting. Natural Hazards and Earth System Sciences, 6(3), 407-417.
    Korb, K. B., & Nicholson, A. E. (2010). Bayesian artificial intelligence. CRC press.
    Kotir, J. H., Smith, C., Brown, G., Marshall, N., & Johnstone, R. (2016). A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana. Science of The Total Environment, 573, 444-457. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.08.081
    Koutsouris, A. J., Seibert, J., & Lyon, S. W. (2017). Utilization of Global Precipitation Datasets in Data Limited Regions: A Case Study of Kilombero Valley, Tanzania. Atmosphere, 8(12), 246. https://www.mdpi.com/2073-4433/8/12/246
    Kundzewicz, Z. W., & Doell, P. (2009). Will groundwater ease freshwater stress under climate change? Hydrological sciences journal, 54(4), 665-675.
    Laronne Ben-Itzhak, L., & Gvirtzman, H. (2005). Groundwater flow along and across structural folding: an example from the Judean Desert, Israel. Journal of hydrology, 312(1), 51-69. https://doi.org/https://doi.org/10.1016/j.jhydrol.2005.02.009
    Leu, S.-S., & Bui, Q.-N. (2016). Leak Prediction Model for Water Distribution Networks Created Using a Bayesian Network Learning Approach. Water resources management, 30(8), 2719-2733. https://doi.org/10.1007/s11269-016-1316-8
    Liang, X., Xie, Z., & Huang, M. (2003). A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model. Journal of Geophysical Research: Atmospheres, 108(D16).
    Lin, Y.-P., Chen, Y.-W., Chang, L.-C., Yeh, M.-S., Huang, G.-H., & Petway, J. R. (2017). Groundwater simulations and uncertainty analysis using MODFLOW and geostatistical approach with conditioning multi-aquifer spatial covariance. Water, 9(3), 164.
    Llamas, M. R., Custodio, E., De la Hera, A., & Fornés, J. (2015). Groundwater in Spain: increasing role, evolution, present and future. Environmental Earth Sciences, 73, 2567-2578.
    Macmillan, A., Davies, M., Shrubsole, C., Luxford, N., May, N., Chiu, L. F., Trutnevyte, E., Bobrova, Y., & Chalabi, Z. (2016). Integrated decision-making about housing, energy and wellbeing: a qualitative system dynamics model. Environmental Health, 15, 23-34.
    Marginson, S. (2016). The worldwide trend to high participation higher education: dynamics of social stratification in inclusive systems. Higher Education, 72(4), 413-434. https://doi.org/10.1007/s10734-016-0016-x
    McCann, R. K., Marcot, B. G., & Ellis, R. (2006). Bayesian belief networks: applications in ecology and natural resource management. Canadian Journal of Forest Research, 36(12), 3053-3062.
    Meng, Q., Liu, Z., & Borders, B. E. (2013). Assessment of regression kriging for spatial interpolation – comparisons of seven GIS interpolation methods. Cartography and Geographic Information Science, 40(1), 28-39. https://doi.org/10.1080/15230406.2013.762138
    Mulligan, M. (2003). Modelling and model building in Wainwright, J. and Mulligan, M (eds., 2003) Environmental Modelling: finding the simplicity in complexity. In: Wiley.
    Nassery, H. R., Adinehvand, R., Salavitabar, A., & Barati, R. (2017). Water management using system dynamics modeling in semi-arid regions. Civil Engineering Journal, 3(9), 766-778.
    Nikovski, D. (2000). Constructing Bayesian networks for medical diagnosis from incomplete and partially correct statistics. IEEE Transactions on Knowledge and Data Engineering, 12(4), 509-516.
    Peterson, T. J., & Fulton, S. (2019). Joint estimation of gross recharge, groundwater usage, and hydraulic properties within HydroSight. Groundwater, 57(6), 860-876.
    Plant, N. G., & Holland, K. T. (2011). Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models. Coastal Engineering, 58(1), 119-130. https://doi.org/https://doi.org/10.1016/j.coastaleng.2010.09.003
    Pool, D., Blasch, K. W., Callegary, J. B., Leake, S. A., & Graser, L. F. (2011). Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona (2328-0328).
    Priyan, K. (2021). Issues and challenges of groundwater and surface water management in semi-arid regions. Groundwater Resources Development and Planning in the Semi-Arid Region, 1-17.
    Richardson, G. (2007). Greater than the Sum: System Thinking in Tobacco Control.
    Ross, A. (2018). Speeding the transition towards integrated groundwater and surface water management in Australia. Journal of hydrology, 567, e1-e10. https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.01.037
    Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson.
    Sabale, R., Venkatesh, B., & Jose, M. (2023). Sustainable water resource management through conjunctive use of groundwater and surface water: A review. Innovative Infrastructure Solutions, 8(1), 17.
    Saravanan, V. S. (2008). A systems approach to unravel complex water management institutions. Ecological Complexity, 5(3), 202-215. https://doi.org/https://doi.org/10.1016/j.ecocom.2008.04.003
    Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., & Colón-González, F. J. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences, 111(9), 3245-3250.
    Schuetze, T., & Chelleri, L. (2013). Integrating decentralized rainwater management in urban planning and design: Flood resilient and sustainable water management using the example of coastal cities in the Netherlands and Taiwan. Water, 5(2), 593-616.
    Scotese, C. R., Song, H., Mills, B. J., & van der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503.
    Seckler, D. W. (1998). World water demand and supply, 1990 to 2025: Scenarios and issues (Vol. 19). Iwmi.
    Sethi, L. N., Kumar, D. N., Panda, S. N., & Mal, B. C. (2002). Optimal crop planning and conjunctive use of water resources in a coastal river basin. Water resources management, 16, 145-169.
    Shih, D.-S., Chen, C.-J., Li, M.-H., Jang, C.-S., Chang, C.-M., & Liao, Y.-Y. (2019). Statistical and numerical assessments of groundwater resource subject to excessive pumping: Case study in Southwest Taiwan. Water, 11(2), 360.
    Simonovic, S. P. (2000). One View of the Future. Water International, 25(1), 76-88. https://doi.org/10.1080/02508060008686799
    Simonovic, S. P. (2002). Global water dynamics: issues for the 21st century. Water science and technology, 45(8), 53-64.
    Sperotto, A., Molina, J.-L., Torresan, S., Critto, A., & Marcomini, A. (2017). Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective. Journal of Environmental Management, 202, 320-331. https://doi.org/https://doi.org/10.1016/j.jenvman.2017.07.044
    Stave, K. (2015). System dynamics for environmental applications. In Handbook of research methods and applications in environmental studies (pp. 327-345). Edward Elgar Publishing.
    Steenbeek, H., & van Geert, P. (2013). The emergence of learning-teaching trajectories in education: A complex dynamic systems approach. Nonlinear dynamics, psychology, and life sciences, 17(2), 233-267.
    Sterman, J. (2010). Business dynamics. Irwin/McGraw-Hill c2000..
    Sterman, J. D. (2012). Sustaining sustainability: creating a systems science in a fragmented academy and polarized world. Sustainability science: The emerging paradigm and the urban environment, 21-58.
    Sy, C., Bernardo, E., Miguel, A., San Juan, J. L., Mayol, A. P., Ching, P. M., Culaba, A., Ubando, A., & Mutuc, J. E. (2020). Policy development for pandemic response using system dynamics: a case study on COVID-19. Process Integration and Optimization for Sustainability, 4, 497-501.
    Tang, V., & Vijay, S. (2001). System dynamics. Origins, development, and future prospects of a method.
    Tran, D.-H., Wang, S.-J., & Nguyen, Q. C. (2022). Uncertainty of heterogeneous hydrogeological models in groundwater flow and land subsidence simulations – A case study in Huwei Town, Taiwan. Engineering Geology, 298, 106543. https://doi.org/https://doi.org/10.1016/j.enggeo.2022.106543
    Tran, Q.-D., Ni, C.-F., Lee, I.-H., Truong, M.-H., & Liu, C.-J. (2020). Numerical modeling of surface water and groundwater interactions induced by complex fluvial landforms and human activities in the pingtung plain groundwater basin, Taiwan. Applied Sciences, 10(20), 7152.
    Tsanis, I. K., Koutroulis, A. G., Daliakopoulos, I. N., & Jacob, D. (2011). Severe climate-induced water shortage and extremes in Crete: A letter. Climatic Change, 106, 667-677.
    Tugwell-Wootton, T., Skrzypek, G., Dogramaci, S., McCallum, J., & Grierson, P. F. (2020). Soil moisture evaporative losses in response to wet-dry cycles in a semiarid climate. Journal of hydrology, 590, 125533. https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.125533
    Tung, Y.-T., & Pai, T.-Y. (2015). Water Management for Agriculture, Energy, and Social Security in Taiwan. CLEAN – Soil, Air, Water, 43(5), 627-632. https://doi.org/https://doi.org/10.1002/clen.201300275
    Vedula, S., Mujumdar, P., & Sekhar, G. C. (2005). Conjunctive use modeling for multicrop irrigation. Agricultural Water Management, 73(3), 193-221.
    Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental modelling & software, 25(11), 1268-1281.
    Wang, J., Lu, H., & Peng, H. (2008). System Dynamics Model of Urban Transportation System and Its Application. Journal of Transportation Systems Engineering and Information Technology, 8(3), 83-89. https://doi.org/https://doi.org/10.1016/S1570-6672(08)60027-6
    Werhli, A. V., & Husmeier, D. (2007). Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Statistical applications in genetics and molecular biology, 6(1).
    Wickramarachchi, M., & Wijesekera, N. (2022). Hydrological modelling with the tank model for water resource management of Nilwala River Basin. Engineer: Journal of the Institution of Engineers, Sri Lanka, 55(1), 85-94.
    wikipedia/Bayesian_network. (2024). File:圖二:一個簡單的貝氏網路例子.jpg. https://doi.org/https://commons.wikimedia.org/wiki/File:%E5%9C%96%E4%BA%8C%EF%BC%9A%E4%B8%80%E5%80%8B%E7%B0%A1%E5%96%AE%E7%9A%84%E8%B2%9D%E6%B0%8F%E7%B6%B2%E8%B7%AF%E4%BE%8B%E5%AD%90.jpg
    Wood, E. F., Roundy, J. K., Troy, T. J., Van Beek, L., Bierkens, M. F., Blyth, E., de Roo, A., Döll, P., Ek, M., & Famiglietti, J. (2011). Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water. Water resources research, 47(5).
    Wu, Z.-H., Liu, A., Zhou, P.-C., & Su, Y. F. (2016). A Bayesian network based method for activity prediction in a smart home system. 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
    Yang, C.-C., Chang, L.-C., & Ho, C.-C. (2008). Application of System Dynamics with Impact Analysis to Solve the Problem of Water Shortages in Taiwan. Water resources management, 22(11), 1561-1577. https://doi.org/10.1007/s11269-008-9243-y
    Yang, Y.-J., Hwang, C., Hung, W.-C., Fuhrmann, T., Chen, Y.-A., & Wei, S.-H. (2019). Surface deformation from Sentinel-1A InSAR: relation to seasonal groundwater extraction and rainfall in Central Taiwan. Remote Sensing, 11(23), 2817.
    Yao, Y., Zheng, C., Liu, J., Cao, G., Xiao, H., Li, H., & Li, W. (2015). Conceptual and numerical models for groundwater flow in an arid inland river basin. Hydrological Processes, 29(6), 1480-1492.
    Yihdego, Y., & Khalil, A. (2017). Groundwater resources assessment and impact analysis using a conceptual water balance model and time series data analysis: Case of decision making tool. Hydrology, 4(2), 25.
    Yu, P.-S., Yang, T.-C., & Kuo, C.-C. (2006). Evaluating Long-Term Trends in Annual and Seasonal Precipitation in Taiwan. Water resources management, 20(6), 1007-1023. https://doi.org/10.1007/s11269-006-9020-8
    Zagorecki, A., Orzechowski, P., & Hołownia, K. (2013). A system for automated general medical diagnosis using Bayesian networks. In MEDINFO 2013 (pp. 461-465). IOS Press.
    Zamani, M. G., Moridi, A., & Yazdi, J. (2022). Groundwater management in arid and semi-arid regions. Arabian Journal of Geosciences, 15(4), 362.
    Zeng, Y., Xie, Z., Liu, S., Xie, J., Jia, B., Qin, P., & Gao, J. (2018). Global land surface modeling including lateral groundwater flow. Journal of Advances in Modeling Earth Systems, 10(8), 1882-1900.
    Zeng, Y., Xie, Z., Yu, Y., Liu, S., Wang, L., Zou, J., Qin, P., & Jia, B. (2016). Effects of anthropogenic water regulation and groundwater lateral flow on land processes. Journal of Advances in Modeling Earth Systems, 8(3), 1106-1131.
    Zhang, X. (2015). Conjunctive surface water and groundwater management under climate change. Frontiers in Environmental Science, 3, 59.
    Zhong, W.-C. (2004). A Study on the Estimation of Hydrographin Ungauged Catchments of Kao-Ping River National Cheng Kung University].
    中區水資源分署. (2024). 鯉魚潭水庫主題網. https://doi.org/https://www.wracb.gov.tw/47846/
    方煒. (1997). 台灣的太陽能輻射現況. 方煒教授的網頁. https://doi.org/http://140.112.183.23/taisugar/GH-DSS/pdf/%E5%8F%B0%E7%81%A3%E7%9A%84%E5%A4%AA%E9%99%BD%E8%83%BD%E8%BC%BB%E5%B0%84.pdf
    王暐婷, 何佳陽. (2024). 2021年台灣百年大旱 減壓供水、限水、停耕氣候危機已無法迴避. https://doi.org/https://tw.news.yahoo.com/2021%E5%B9%B4%E5%8F%B0%E7%81%A3%E7%99%BE%E5%B9%B4%E5%A4%A7%E6%97%B1-%E6%B8%9B%E5%A3%93%E4%BE%9B%E6%B0%B4-%E9%99%90%E6%B0%B4-%E5%81%9C%E8%80%95%E6%B0%A3%E5%80%99%E5%8D%B1%E6%A9%9F%E5%B7%B2%E7%84%A1%E6%B3%95%E8%BF%B4%E9%81%BF-143547898.html
    交通部中央氣象局. (2024). 新雨量分級Q&A全書下載. https://doi.org/https://www.cwa.gov.tw/V8/C/K/CommonFaq/rain_all.html
    政府資料開放平台. (2024a). 地下水分區第一含水層觀測井控制範圍. https://doi.org/https://opendata.wra.gov.tw/CloudFile/getFile.ashx?id=BCEA2AA3-4570-4954-98AC-6197E1634D6D
    政府資料開放平台. (2024b). 地下水分區第二含水層觀測井控制範圍. https://doi.org/https://opendata.wra.gov.tw/CloudFile/getFile.ashx?id=2DB485BB-CB3A-4B61-98B7-95D347BAF271
    國家災害防救科技中心. (2024). 台灣乾旱災害特性. https://doi.org/https://dra.ncdr.nat.gov.tw/Frontend/Disaster/RiskDetail/BAL0000022
    張岱屏. (2024). 尋找救命水|多元水源來抗旱. https://doi.org/https://ourisland.pts.org.tw/content/7828
    陳士杰. (2005). 類神經網路基礎. 機器學習課程.
    曾怡潔. (2019). 蒸發散與入滲對土壤含水量與地下水位變動之 影響研究 國立中央大學]. 臺灣博碩士論文知識加值系統. 桃園縣. https://hdl.handle.net/11296/q37cpq
    經濟部水利署. (2016). 臺灣中部區域水資源經理基本計畫.
    經濟部水利署. (2024a). 大安大甲溪聯通管工程計畫. https://doi.org/https://web.wra.gov.tw/dajia-river/cp.aspx?n=7762
    經濟部水利署. (2024b). 水資源. https://doi.org/https://www.wrap.gov.tw/cp.aspx?n=26272
    經濟部水利署. (2024c). 台灣水環境 走過,命中注定原貌! https://doi.org/https://epaper.wra.gov.tw/Article_Detail.aspx?s=314&n=30177
    經濟部水利署. (2024d). 氣象預測降雨偏少 加強節水 台中苗栗4月6日分區供水. https://doi.org/https://www.wra.gov.tw/News_Content.aspx?n=6430&s=86095
    經濟部水利署. (2024e). 臺中地區水源調度. https://doi.org/https://www.wracb.gov.tw/8831/8854/9314/9318/?id=12809
    經濟部水利署. (2024f). 臺灣與其他國家降雨量比較. https://doi.org/https://www.wra.gov.tw/media/15569/f-temp-attachment-5131392571.xls
    經濟部水利署中文版全球資訊網. (2024a). 水情燈號. https://doi.org/https://www-ws.wra.gov.tw/001/Upload/401/relpic/0/newsearlywarningimg20210521.png
    經濟部水利署中文版全球資訊網. (2024b). 臺灣本島及離島地下水分區. https://doi.org/https://www.wra.gov.tw/cp.aspx?n=3681
    經濟部水利署中區水資源分署. (2024). 水利署中區水資源分署水庫月報查詢. https://doi.org/https://hydro2.wracb.gov.tw/WracbHydrology/index.html
    農田水利處. (2024). 台灣農業用水具有三生功能,不宜僅從經濟貢獻度衡量. https://doi.org/https://www.moa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=4017
    廖靜蕙. (2024). 以濕地概念營造地下水庫 大潮州人工湖要讓「洪水資源化」. https://doi.org/https://earthday.org.tw/archives/2269
    劉宏仁, 徐盛年. (2018). 台中水資源開發模式建立與應用. 學術天地.
    劉玫婷, 李欣輯, 徐永衡, 陳永明. (2021). 2021年乾旱事件農作物損失調查紀實. https://doi.org/https://www.ncdr.nat.gov.tw/UploadFile/Newsletter/efc8cdba0d5b41398ea57629040337d6.pdf
    賴允政. (2024). 台灣是水資源的過路財神. https://doi.org/https://outlook.stpi.narl.org.tw/file/download/3322

    QR CODE
    :::