| 研究生: |
李政宏 Cheng-Hung Lee |
|---|---|
| 論文名稱: |
利用深度神經網路模型換算表面電漿共振增強 Goos-Hänchen 位移 Using deep neural network (DNN) model to transform the surface plasma resonance (SPR) signal into its corresponding Goos-Hänchen shift |
| 指導教授: |
郭倩丞
Chien-Cheng Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 深度神經網路 、表面電漿共振 |
| 外文關鍵詞: | deep neural network, surface plasma resonance |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來將表面電漿共振應用於生物傳感器已在生物研究、健康科學研究、藥物發現、臨床診斷、環境和農業監測等領域非常流行,它可檢測傳感器表面的折射率變化,且擁有即時檢測、非標記、高靈敏度等優點,在市面上也有越來越多的商用儀器證明了 SPR 生物傳感器的成功。由於SPR生物傳感器在近年來得到了相當大的進展,本論文將利用機器學習中的深度神經網路對在表面電漿共振下之TE波、TM波之干涉現象搭配Goos–Hänchen位移進行學習,建立出一套Goos–Hänchen位移之生物傳感器模型,模型建立後,將各濃度之甘油水溶液丟入模型量測,並量測其靈敏度與檢測極限,可得到Goos–Hänchen位移之生物傳感器靈敏度為為29590μm/RIU,檢測極限為7.14∙〖10〗^(-6) RIU,相較於傳統的SPR反射強度量測,檢測極限整整多出了兩個量級,這不僅證實了相位式SPR量測在表現上優於反射強度量測,也透過訓練上參數的選擇證實了Goos–Hänchen位移量測靈敏度的增強來自於共振時的奇異相位延遲,而也因Goos–Hänchen位移與相位息息相關,因此Goos–Hänchen位移SPR生物傳感器也提供了另一種相位式SPR量測方法,相較於傳統相位式量測大大簡化了光學元件的運用。
In recent years, the application of surface plasmon resonance to biosensors (SPR Biosensor) has become very popular in the fields of biological research, health science research,drug discovery, clinical diagnosis,environmental and agricultural monitoring, etc. It can detect changes in the refractive index of the sensor surface, and with the advantages of instant detection,lable-free,and high sensitivity, more and more commercial instruments on the market have proved the success of SPR biosensors.As SPR biosensors have made considerable progress in recent years, this paper will use the deep neural network in machine learning to learn the interference phenomena of TE waves and TM waves under surface plasmon resonance with Goos–Hänchen displacement, and establish a set of biosensor models for Goos–Hänchen displacement. After the model was established,the glycerol solution of various concentrations was dropped into the model for measurement,and its sensitivity and detection limit were measured. The sensitivity of the biosensor for Goos–Hänchen displacement can be obtained as 29590μm/RIU, the detection limit is 7.14∙〖10〗^(-6) RIU.Compared with the traditional SPR reflection intensity measurement,the detection limit is two orders of magnitude more,which not only confirms that the phase SPR measurement is better than the reflection intensity measurement, but also confirms that the increase in the sensitivity of the Goos–Hänchen displacement measurement is due to the singular phase delay at resonance. And because the Goos–Hänchen displacement is closely related to the phase, the Goos–Hänchen displacement SPR biosensor also provides another phase-based SPR measurement method, which greatly simplifies the use of optical components compared to the traditional phase-based measurement.
[1] J. R. Sambles, G. W. Bradbery, F. Yang, "Optical excitation of surface plasmons: An introduction, " Contemporary Physics, volume 32, number 3, pages 173-183(1911).
[2] Z. W. Zhang, T. D. Wen, Z. F. Wu, "A Novel Method for Heightening Sensitivity of Prism Coupler-Based SPR Sensor, " Phys. Lett. 28 054211(2011).
[3] X. Yina, L. Hesselink, "Goos-Hänchen shift surface plasmon resonance sensor, " Appl. Phys. Lett. 89, 261108 (2006).
[4] Scholarpedia, "Goos-Hänchen effect, " http://www.scholarpedia.org/article/Goos-H%C3%A4nchen_effect
[5] 涂譽馨,利用表面電漿共振增強 Goos-cHänhen 位移現象量測折射率變化(碩士論文2020)
[6] B. Liedberg, C. Nylander, I. J. B. Lundström, and Bioelectronics, "Biosensing with surface plasmon resonance—how it all started," Biosensors and Bioelectronics, volume 10, Issue8, Pages i-ix(1995).
[7] I. Alves, C. Park, V. J. J. C. P. Hruby, and P. Science, "Plasmon resonance methods in GPCR signaling and other membrane events," Current Protein and Peptide Science, Volume 6, Number 4, pages 293-312(2005).
[8] P. J. S. Singh, B. Chemical, "SPR biosensors: historical perspectives and current challenges," Sensors and Actuators B, Volume 229, Pages 110-130(2016).
[9] B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles," Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor," Optics Letters,Vol. 31, Issue 8, pp. 1085-1087 (2006).
[10] X. Zhao , C. S. Yu , W. H. Tsai , C. H. Wang , T. L. Chuang, C. W. Lin, Y. C. Tsao, M. S. Wu, "Improvement of the sensitivity of the surface plasmon resonance sensors based on multi-layer modulation techniques," Optics Communications, Vol. 335, Pages 32-36(2015).
[11] T. T. Nguyen, E. C. Lee, H. Ju, "Bimetal coated optical fiber sensors based on surface plasmon resonance induced change in birefringence and intensity, " Vol. 22, Issue5, Pages 5590-5598(2014).
[12] G. G. Nenninger, P. Tobiška, J. Homola, S. S. Yee, "Long-range surface plasmons for high-resolution surface plasmon resonance sensors," Sensors and Actuators B: Chemical,Volume 74, Issues 1–3, 15, Pages 145-151(2001).
[13] K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, Y. Shao, " Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions," J. of Biomedical Optics, Volume 21(2016).
[14] H. P. Chiang, J. L. Lin, Z. W. Chen,’ High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths,’ Appl. Phys. Lett. 88, 141105 (2006)
[15] R. Naraoka, K. Kajikawa, "Phase detection of surface plasmon resonance using rotating analyzer method," Sensors and Actuators B, Volume 107, Issue 2, Pages 952-956(2005)
[16] Y. Zeng, X. Wang, J. Zhou, R. Miyan, J. Qu, H. P. Ho, K. Zhou, B. Z.Gao, and Y. Shao, "Phase interrogation SPR sensing based on white light polarized interference for wide dynamic detection range," Optical Express, Volume 28, Issues 3, Pages 3442-3450(2020).
[17] A. K. Sheridan , R. D. Harris, P. N. Bartlett, "James S. Wilkinson , Phase interrogation of an integrated optical SPR sensor," Sensors and Actuators B, Pages 114–121(2004).
[18] Y. Guo1, N. M. Singh, C. M. Das, Q. Ouyang, L. Kang, K. Li, P. Coquet, K. T. Yong, "Two-dimensional PtSe2 Theoretically Enhanced Goos-Hänchen Shift Sensitive Plasmonic Biosensors," Plasmonics Pages 1815–1826(2020).
[19] Q. You, Y. Shan, S. Gan, Y. Zhao, X. Dai, Y. Xiang, "Giant and controllable Goos-Hänchen shifts based on surface plasmon resonance with graphene-MoS2 heterostructure, " Optical Materials Express,Volume 8, Issues 10, Pages 3036-3048(2018).
[20] Wikipedia, "Deep learnig, " https://en.wikipedia.org/wiki/Deep_learning
[21] 高智敏,速記AI課程 – 深度學習入門(一),https://baubibi.medium.com/%E9%80%9F%E8%A8%98ai%E8%AA%B2%E7%A8%8B%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92%E5%85%A5%E9%96%80-%E4%B8%80-68e27912ce30
[22] S. Shen, 深度學習入門-2, https://syshen.medium.com/%E5%85%A5%E9%96%80%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-2-d694cad7d1e5
[23] Mr. Opengate, "Deep Learning : the role of the activation function," https://mropengate.blogspot.com/2017/02/deep-learning-role-of-activation.html
[24] Wikipedia, "overfitting," https://en.wikipedia.org/wiki/Overfitting
[25] K. Huang, "Epoch,Batch size,Iteration,Learning rate," https://medium.com/%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7%E5%80%92%E5%BA%95%E6%9C%89%E5%A4%9A%E6%99%BA%E6%85%A7/epoch-batch-size-iteration-learning-rate-b62bf6334c49
[26] K. Huang, "Gradient Descent Learning Rule," https://medium.com/%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7%E5%80%92%E5%BA%95%E6%9C%89%E5%A4%9A%E6%99%BA%E6%85%A7/%E6%A2%AF%E5%BA%A6%E4%B8%8B%E9%99%8D%E5%AD%B8%E7%BF%92%E6%B3%95-gradient-descent-learning-rule-83e1915f76cb
[27] 李正中,薄膜光學與鍍膜技術第八版(藝軒,2020)
[28] Scholarpedia, "Goos-Hänchen effect," http://www.scholarpedia.org/article/Goos-H%C3%A4nchen_effect
[29] 邱國斌、蔡定平,金屬表面電漿簡介(物理雙月刊,2006)
[30] G. Y. Oh, D. G. Kim, Y. T. Moon, D. G. Kim, Y. W. Choi, "Analysis of surface plasmon resonance with Goos-Hanchen shift using FDTD method," Integrated Optics: Devices, Materials, and Technologies XIII, Proceedings Volume 7218 (2009)
[31] 陳冠宏,有限尺寸的陣列對於次波長孔徑陣列穿透綠增強之影響(碩士論文2014)
[32] A. P. Vinogradov, A. V. Dorofeenko, A. A. Pukhov, and A. A. Lisyansky, "Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam," Phys. Rev. B97(2018)
[33] Wikipedia, "Gradient descent ," https://en.wikipedia.org/wiki/Gradient_descent
[34] Thorlabs, "Free-space Electro-optic Modulators," https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2729
[35]D. C. Su, M. H. Chiu, C. D. Chen, "Simple two-frequency laser," Volume 18, Issues 2–3, Pages 161-163(1996).