| 研究生: |
葉蟬嫻 Chan-Hsien Yeh |
|---|---|
| 論文名稱: |
探討酵母菌ALA1基因的non-AUG轉譯機制 Mechamism of non-AUG initiation in yeast ALA1 |
| 指導教授: |
王健家
Chien-Chia Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 酵母菌 、轉譯機制 |
| 外文關鍵詞: | ALA1, AlaRS, non-AUG translation |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ALA1是酵母菌唯一的alanyl-tRNA synthetase (AlaRS) 基因,其5’端只有一個ATG起始密碼 (即ATG1),卻可以轉譯出兩種型的AlaRS,分別作用在細胞質及粒腺體內。ALA1利用ATG1轉譯出細胞質的AlaRS,利用ATG1上游的二個重複non-ATG (即ACG-25和ACG-24) 作出序列較長的粒腺體AlaRS。本實驗著重在進一步研究酵母菌的轉譯機制,已知ALA1可以轉錄出三條長短不同的messenger RNA (簡稱mRNA),其5’端分別座落在核苷酸-143,-105和-54上;利用功能性互補試驗 (complementaion) 及西方點漬法 (western blotting),我發現ALA1會利用選擇性轉錄及轉譯的方式,由長度不同的mRNA做出大小不同的兩種AlaRS,也可用leaky scanning的方式由同一條mRNA合成細胞質及粒腺體AlaRS,一般而言這兩種機制甚少同時出現,因此ALA1是相當獨特的例子。除此之外,我也證實non-ATG下游的二級結構,對於non-ATG轉譯機制並非絕對需要,當此結構被破壞時,non-ATG依舊可以有效的產生粒腺體AlaRS,維持酵母菌的生
It was recently shown that ALA1, the only gene in Saccharomyces cerevisiae coding for alanyl-tRNA synthetase (AlaRS), encodes both cytoplasmic and mitochondrial forms. The former is translationally initiated at the ATG codon (designated ATG1) at the 5’-end of its open reading frame, while the latter is initiated from upstream in-frame redundant non-ATG codons (i.e., ACG-25 and ACG-24). In this thesis, I investigated the translational mechanism of ALA1 by which long and short protein isoforms were produced from the single gene. Like many known non-ATG initiators, a secondary structure is identified downstream of ACG-25. However, mutations that destroy the secondary structure do not impair its initiating activity. Functional tests, in combination with Western blot analysis, suggest that the isoforms of AlaRS can be translated from long and short transcripts by alternative transcription/translation, or from a single transcript by leaky scanning. To our knowledge, this appears to be a novel case where both leaky scanning and alternative transcription/translation are involved in the production of protein isoforms.
Acland, P., Dixon, M., Peters, G., and Dickson, C. (1990) Subcellular fate of the int-2 oncoprotein is determined by choice of initiation codon. Nature 343, 662-665
Arnaud, E., Touriol, C., Boutonnet, C., Gensac, M. C., Vagner, S., Prats, H., and Prats, A. C. (1999) A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol. Cell. Biol. 19, 505–514.
Birnboim, H. C. and Doly, J. (1980) A rapid alkaline extraction procedure for screening recombinant plamid DNA. Nucleic acid Res. 7: 1513-1523
Bradford, M. M. (1976) A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Carroll, R. and Derse, D. (1993) Translation of equine infectious anemia virus bicistronic tat-rev mRNA requires leaky ribosome scanning of the tat CTG initiation codon. J. Virol. 67, 1433–1440.
Carter, C. W. Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62: 715-748
Chatton, B., Walter, P., Ebel, J. P., Lacroute, F., and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52-57.
Cigan, A. M., Pabich, E. K., and Donahue, T. F. (1988) Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 2964-2975.
Clements, J. M., Laz, T. M., and Sherman, F. (1988) Efficiency of translation initiation by non-AUG codons in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 4533-4536.
Donahue, T. F. and Cigan, A. M. (1988) Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region. Mol. Cell. Biol. 8: 2955-2963
Fajardo, J. E., Birge, R. B., and Hanafusa, H. (1993) A 31-amino acid N-terminal extension regulates c-Crk binding to tyrosine- phosphorylated proteins. Mol. Cell. Biol. 13, 7295–7302.
Felter, S., Diatewa, M., Schneider, C., and Stahl, A. J. (1981) Yeast mitochondrial and cytoplasmic valyl-tRNA synthetases. Biochem. Biophys. Res. Commun. 98: 727-734.
Florkiewicz, R. Z. and Sommer, A. (1989) Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non- AUG codons. Proc. Natl. Acad. Sci. USA 86, 3978–398
Fu¨tterer, J., Potrykus, I., Bao, Y., Li, L., Burns, T. M., Hull, R., and Hohn (1996) Position-dependent ATT initiation during plant pararetrovirus rice tungro bacilliform virus translation. J. Virol. 70, 2999–3010.
Fuxe, J., Raschperger, E., and Pettersson, R. F. (2000) Translation of p15.5INK4B, an N-terminally extended and fully active form of p15INK4B, is initiated from an upstream GUG codon. Oncogene 19, 1724–1728.
Giegé, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26: 5017-5035
Hackett, P. B., Petersen, R. B., Hensel, C. H., Albericio, F., Gunderson, S. I., Palmenberg, A. C., and Barany, G. (1986) Synthesis in vitro of a seven amino acid peptide encoded in the leader RNA of Rous sarcoma virus. J. Mol. Biol. 190, 45–57.
Hann, S. R., Aloan-Brown, K., and Spotts, G. D. (1992) Translational activation of the non-AUG-initiated c-myc 1 protein at high cell densities due to methionine deprivation. Genes Dev. 6, 1229-1240
Kozak, M. (1989) Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems. Mol. Cell. Biol. 9: 5073-5080.
Kozak, M. (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87: 8301-8305.
Kozak, M. (1991) An analysis of vertebrate mRNA sequences: intimationsof translational control. J. Cell Biol. 115, 887–903.
Kozak, M. (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266: 19867-19870.
Kozak, M. (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 16(9):2482-92
Kozak, M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234: 187-208
Lock, P., Ralph, S., Stanley, E., Boulet, I., Ramsay, R., and Dunn, A. R. (1991) Two isoforms of murine hck, generated by utilization of alternative translational initiation codons, exhibit different patterns of subcellular localization. Mol. Cell. Biol. 11, 4363–4370.
Manistic, T., et al. (1989) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory.
Martinis, S. A. and Schimmel, P. (1996) In Escherichia coli and Salmonella Cellular and Molecular Biology, ed. Neidhardt, F. C. (Am. Soc. Microbiol., Washington, DC), 2nd Ed., pp. 887-901
Maréchal-Drouard, L., Weil, J. H., and Dietrich, A. (1993) Transfer RNAs and transfer RNA genes in plants. Annu. Rev. Cell. Biol. 8: 115-131.
Mireau, H., Lancelin, D., and Small, I. D. (1996) The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases The Plant Cell 8: 1027-1039
Muralidhar, S., Becerra, S. P., and Rose, J. A. (1994) Site-directed mutagenesis of adeno-associated virus type 2 structural protein initiation codons: effects on regulation of synthesis and biological activity. J. Virol. 68, 170–176.
Nakai, K. and Horton, P. (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization Trends Biochem. Sci. 24: 34-36
Natsoulis, G., Hilger, F., and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243.
Nett, J. H., Kessl, J., Wenz, T., and Trumpower, B. L. (2001) The AUG start codon of the Saccharomyces cerevisiae NFS1 gene can be substituted for by UUG without increased initiation of translation at downstream codons. Eur. J. Biochem. 268: 5209-5214
Packham, G., Brimmell, M., and Cleveland, J. L. (1997) Mammalian cells express two differently localized Bag-1 isoforms generated by alternative translation initiation. Biochem. J. 328, 807-813
Pelchat, M. and Lapointe, J. (1999) Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation. Biochem. Cell Biol. 77: 343-347
Portis, J. L., Spangrude, G. J., and McAtee, F. J. (1994) Identification of a sequence in the unique 5’ open reading frame of the gene encoding glycosylated gag which influences the incubation period of neurodegenerative disease induced by a murine retrovirus. J. Virol. 68, 3879–3887.
Raney, A., Baron, A. C., Mize, G. J., Law, G. L., and Morris, D. R. (2000) In vitro translation of the upstream open reading frame in the mammalian mRNA encoding S-adenosylmethionine decarboxylase. J. Biol. Chem. 275, 24444–24450.
Ripmaster, T. L., Shiba, K., and Schimmel, P. (1995) Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc. Natl. Acad. Sci. USA 92: 4932-4936
Saris, C. J., Domen, J., and Berns, A. (1991) The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 10, 655-664
Sherman, F., Stewart, J. W., and Schweingruber, A. M. (1980) Mutants of yeast initiating translation of iso-1-cytochrome c within a region spanning 37 nucleotides. Cell 20: 215-222.
Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27
Souciet, G., Menand, B., Ovesna, J., Cosset, A., Dietrich, A., and Wintz, H. (1999) Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur. J. Biochem. 266: 848-854.
Spotts, G. D., Patel, S. V., Xiao, Q., and Hann, S. R. (1997) Identification downstream-initiated c-myc proteins which are dominant-negative inhibitors of transactivation by full-length c-myc proteins. Mol. Cell. Biol. 17, 1459–1468.
Wang, L. and Wessler, S. R. (2001) Role of mRNA secondary structure in translational repression of the maize transcriptional activator Lc. Plant Physiol. 125, 1380–1387.
Yoon, H. and Donahue, T. F. (1992) Control of translation initiation in Saccharomyces cerevisiae. Mol. Biol. 6: 1413-1419
唐蕙苓 (2002) 酵母菌轉譯起始機制的研究。中央大學碩士論文。