跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉志春
Chih-Chun Liu
論文名稱: Ka頻段主動式陣列天線暨接收機前端電路之研製
Ka-Band Active Antenna Array and Receiver Front-End Circuits Design
指導教授: 邱煥凱
Hwann-Kaeo Chiou
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系在職專班
Executive Master of Electrical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 82
中文關鍵詞: 陣列天線低雜訊放大器壓控振盪器
外文關鍵詞: VCO, LNA, Array antenna
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究內容為Ka頻段主動式陣列天線及接收機之前端電路研究,其中所設計的主動式天線陣列部分則是利用Rogers RO5880板材所製作,整合低雜訊放大器以及功率放大器,並且固定於金屬機殼之中;晶片則是利用tsmc 0.18 ?m CMOS製程研製,包括28 GHz共源極寬頻放大器、28 GHz變壓器回授技術之共平面波導低雜訊放大器、27.1 GHz變壓器回授式壓控振盪器等。
    主動式天線陣列設計中包含了一分四威金森功率分配器、角型偶極天線(Angled-dipole antenna)、角型偶極天線陣列(Angled-dipole antenna array)以及整合低雜訊放大器及功率放大器之主動式天線陣列(active antenna array)。
    Ka 頻帶接收機前端電路則包含三個電路,其中28 GHz寬頻低雜訊放大器,中心頻率為28 GHz,功率增益為12.6 dB,而3-dB頻寬可以達到8 GHz,其中平坦度可以達到±1.3 dB,輸入輸出返回損耗皆大於8.3 dB,雜訊指數在22 ~ 30 GHz之間為4.87 ~ 6.55 dB。Ka頻段變壓器回授技術之共平面波導低雜訊放大器,中心頻率在28 GHz,功率增益為15.11 dB,輸入返回損耗大於12 dB,輸出返回損耗則大於7 dB,雜訊指數在28 GHz 之間為5.87 dB。27.1 GHz變壓器回授型壓控振盪器則是利用變壓器來獲得較低的相位雜訊,在1 MHz的相位雜訊為-93.27 dBc/Hz,輸出功率為-17 dBm,可調頻率範圍為700 MHz。


    The work in this thesis focuses on Ka-band active array antenna and Ku-band RF receiver front-end circuits. The active array antenna uses Rogers RO5880 substrate to integrate the low noise amplifier (LNA) and power amplifier (PA), then assemble them to the metal housing. The LNA and PA were designed and fabricated in tsmc 0.18 ?m CMOS technology. The designed circuits include 28 GHz common source wideband LNA, Ku-band CPW LNA with transformer feedback technique. A 27.1 GHz transformer feedback voltage control oscillator is also designed and demonstrated.
    The active antenna array design includes Wilkinson power divider, angled-dipole antenna, angled-dipole antenna array and active antenna array which integrate previous mentioned LNA and PA.
    The thesis further addresses Ka-band RF receiver front-end circuits. The 28 GHz common source wideband LNA was implemented using inductive source degenerated topology. The LNA achieved a gain of 12.6 dB, a 3-dB bandwidth of 8 GHz and the input /output return losses of more than 8.3 dB , a noise figure of 4.87 ~ 6.55 dB between 22 ~ 30 GHz. The Ka-band CPW LNA using transformer feedback technique achieved a gain of 15.11 dB, input return losses of more than 12 dB, output return loss of more than 7 dB, a noise figure of 5.87 dB. The 27.1 GHz transformer feedback voltage controlled oscillator utilized the transformer to lower the phase noise. This VCO obtained a tuning range of 700 MHz, an output power of -17dBm, and the phase noise of -93.27 dBc/Hz at 1 MHz offset.

    目 錄 中文摘要...I 英文摘要...II 誌謝 ..II 目錄 ..V 圖目錄 ..VIII 表目錄 ..XII 第一章 緒論 .. 1 1-1 研究動機 .. 1 1-2 研究成果 .. 1 1-3 章節簡述 .. 2 第二章 主動式陣列天線 .. 3 2-1 主要設計架構介紹 .. 3 2-1.1 Ka頻段威金森功率分配器 .. 4 2-1.2模擬與量測結果比較 .. 5 2-1.3 RF Housing ........... 9 2-1.4天線量測環境 ................... 10 2-2角型偶極天線 (Angled-Dipole antenna).... 11 2-2.1天線架構與設計 .................. 11 2-2.2角型天線模擬與量測 ......... 13 2-3角型天線陣列 .......................... 17 2-3.1天線設計與架構 ................. 17 2-3.2天線模擬與量測 ................. 19 2-3.3 結果與討論…............................ 21 2-4主動角型天線陣列............................22 2-4.1主動電路規格 ................... 22 2-4.2主動電路與天線之整合 .............. 23 2-4.3量測結果 ... 25 2-4.4結果討論 ... 28 第三章 低雜訊放大器 ... 29 3-1 低雜訊放大器簡介 ... 29 3-1.1低雜訊放大器電路雜訊來源分析 ... 29 3-1.2單級和串接雜訊指數分析 ........... 30 3-2 28 GHz共源級寬頻低雜訊放大器 ........... 31 3-2.1電路設計重點 ..................... 31 3-2.2電路架構與設計說明 ............ 32 3-2.3電路模擬與量測結果 ............ 33 3-2.4結果討論 ..................... 39 3-3 Ka頻段變壓器回授技術之共平面波導低雜訊放大器設計 .......................................40 3-3.1電路設計重點 ..................... 40 3-3.2電路架構與設計說明 ............ 40 3-3.3電路模擬與量測結果 ............ 45 3-3.4結果討論 ..................... 51 第四章 27.1 GHz壓控振盪器 ..................... 52 4-1 壓控振盪器簡介 ..................... 52 4-1.1振盪器原理 ..................... 53 4-1.2相位雜訊介紹 .............................. 53 4-2 27.1 GHz 變壓器回授型壓控振盪器 ... 53 4-2.1電路設計重點 .............................. 53 4-2.2電路主要架構分析 ..................... 54 4-2.3電路的模擬與量測結果 ..................... 57 4-2.3結果討論 .............................. 60 第五章 論文結論及未來方向 ..................... 61 參考文獻 ....................................... 63

    [1] Y. S. Lin and C. C. Chen, “0.18 mm 21–27 GHz CMOS UWB LNA with 9.3+1.3 dB gain and 103.9+8.1 ps groupdelay,” Electron. Lett., vol. 44, no. 1, Aug. 2008.
    [2] S. C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF Low-Noise Amplifier Using 0.18μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, Jul. 2005.
    [3] K. W. Yu, Y. L. Lu, D. C. Chang, V. Liang and M. F. Chang, “K-band low-noise amplifiers using 0.18μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106-108, Mar. 2004.
    [4] C. H. Doan, S. Emami, A. M. Niknejad and R. W. Brodersen, “Millimeter-Wave CMOS Design”, IEEE J. Solid-State Circuits, vol. 40, no. 1, Jan. 2005.
    [5] B. Afshar and A. M. Niknejad Berkeley Wireless Research Center, Dept. UC Berkeley, “X/Ku Band CMOS LNA Design Techniques,” USA IEEE 2006 Custom Intergrated Circuits Conference.
    [6] X. Guan and A. Hajimiri, “A 24-GHz CMOS front end,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
    [7] F. Ellinger, “26-42 GHz SOI CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 522 – 528, Mar. 2004.
    [8] R. E. Lehmann and D. D. Heston, “X-Band Monolithic Series Feedback LNA,” IEEE Tran. Microw. Theory Tech., Vol. 33, no. 12, pp. 1560 – 1566, Dec. 1985.
    [9] F. Bruccoleri, E.A.M. Klumperink and B. Nauta, “Wide-Band CMOS Low-Noise Amplifier Exploiting Thermal Noise Canceling,” IEEE J. Solid-State Circuits, vol. 39, pp. 275–282, Feb. 2004.
    [10] T. Song, S. Ko, D. H. Cho, H. S. Oh, C. Chung, and E. Yoon, “A 5GHz Transformer-Coupled CMOS VCO Using Bias-Level Shifting Technique,” IEEE RFIC Symp., pp. 127-130, Jun. 2004.
    [11] C. R. C. De Ranter and M. S. J. Steyaert, “A 0.25μm CMOS 17 GHz VCO,” IEEE J. Solid-State Circuits, vol 23, pp. 370-371, Feb. 2001.
    [12] S. Ko, J. G. Kim, T. Song, E. Yoon and S. Hong, “20 GHz Integrated CMOS Frequency Sources with a Quadrature VCO using Transformers,” IEEE RFIC Symp., pp. 269-272, Jun. 2004.
    [13] T. P. Wang, R. C. Liu, H. Y. Chang, L. H. Lu, and H. Wang, “A 22 GHz Push-Push CMOS Oscillator Using Micromachined Inductors,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 859–861, Dec. 2005.
    [14] S. Lo and S. Hong, “Noise Property of a Quadrature Balanced VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp.673–675, Oct. 2005.
    [15] W. L. Ng. Alan, G. C. T. Leung, K. C. Kwok, L. K. L. Lincoln, H. C. Luong, “A 1V 24GHz 17.5mW PLL in 0.18μm CMOS,” IEEE J. Solid-State Circuits, vol 8, pp. 158-160, Feb. 2005.
    [16] C. Cao, Y. Ding , X. Yang , J. J. Lin, H. T. Wu, A. K. Verma, J. Lin, F. Martin, and K. O. Kenneth, “A 24-GHz Transmitter With On-Chip Dipole Antenna in 0.13μm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 6, Jun. 2008.
    [17] T. S. D. Cheung and J. R. Long, “Shielded passive devices for silicon based monolithic microwave and millimeter-wave integrated circuits,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1183-1200, May 2006.
    [18] P. J. Riemer, J. F. Prairie, B. R. Buhrow, C. L. Chen, C. L. Keast, P. W. Wyatt, B. A. Randall, B. K. Gilbert, E. S Daniel, “Ka-Band (35 GHz) Low-noise 180nm SOI CMOS Amplifier,” IEEE International SOI Conference, pp. 125-126, Oct. 2006.
    [19] H. Y. Liao, K. C. Liang, H. K. Chiou, “A Compact and Low Power Consumption K-band Differential Low Noise Amplifier Design Using Transformer Feedback Technique,”Asia-Pacific Microw. Conf., pp. 1-4, Dec. 2007.
    [20] S. C. Shin, S. F. Lai, K. Y. Lin, M. D. Tsai, H. Wang, C. S. Chang, Y. C. Tsai, “18-26 GHz low-noise amplifiers using 130 and 90nm bulk CMOS technologies,” IEEE RFIC Symposium 2005, pp. 47-50, Jun. 2005.
    [21] H. L. Tu, T. Y. Yang, K. H. Liang and H. K. Chiou, “A 30 GHz 10 dB low noise amplifier using standard 0.18μm CMOS Tech.,” Microw. Opt. Tech. Lett., vol. 49, no. 3, Mar. 2007, pp. 647~649.
    [22] W. M. Chang, Z. H. Hsiung and C. F. Jou, “Ka-band 0.18μm CMOS low noise amplifier with 5.2 dB noise figure,” Microw. Opt. Tech. Lett., vol. 49, no. 5, May 2007, pp. 1187~1189.
    [23] C. C. Chen, Y. S. Lin, J. F. Chang and J. H. Lee, “A K-Band low noise amplifier using shunt RC feedback and series inductive peaking techniques,” Microw. Opt. Tech. Lett., vol. 50, No. 5, May 2008, pp. 1148~1151.
    [24] A. A. Eldek, A. Z. Elsherbeni and C. E. Smith, “Wide-band modified printed bow-tie antenna with single and dual polarization for C and X-band applications,” IEEE Trans. Antennas Propag., vol. 5, no. 9, pp3067-307, Sep. 2005.
    [25] G. Y. Chen and J. S. Sun, “A printed dipole antenna with microstrip tapered balun,” Microw. Opt. Tech. Lett.,vol. 40, no. 4, pp. 344-346, Feb. 2004.
    [26] C. Y. Hang, W. R. Deal,Y. Qian and T. Itoh, “High – Efficiency push-pull power amplifer integrated with Quasi-Yagi antenna,”IEEE Trans. Microw. Theory Tech, vol. 49, no. 6, pp.1155-1161,Jun. 2001.
    [27] W. R. Deal, N. Kaneda, J. Sor, Y. Qian and T. Itoh, “A new quasi-Yagi antenna for planar active antenna arrays,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 6, pp.910-918, Jun. 2000.
    [28] P. R. Grajek, B. Schoenlinner and G. M. Rebeiz, “A 24 GHz High-Gian Yagi-Uda antenna array,” IEEE Trans. Antennas Propag.,vol. 52, pp. 1257-1261, May 2004.
    [29] I. S. Chen, H. K. Chiou and N. W. Chen, “V-Band On Chip Diopole-Based Antenna,” IEEE Trans. Antennas Propag., vol. 57, no. 10, Oct. 2009.
    [30] C. A. Balans, Antenna Theory Analysis and Design, 3rd ed. New York:Wiley, 2005.

    QR CODE
    :::