| 研究生: |
葉南慶 nan-ching Yeh |
|---|---|
| 論文名稱: |
衛星資料在夏季午後對流潛勢環境之初步分析 |
| 指導教授: |
陳哲俊
Jer-Jiunn Chen 劉振榮 Gin-Rong Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 大氣穩定指數 、水氣含量 、溫濕剖面 |
| 外文關鍵詞: | NOAA |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
台灣地區夏季期間,常有劇烈午後熱對流的發生,這種對流系統發生的機制,是氣象學家及預報人員相當感到興趣的議題之一。由於午後熱對流發展快速,單單從傳統的觀測資料是不容易做到事前的預警,因此往往造成人、事、物的損傷。尤其台灣地區四面臨海,建立衛星觀測資料之應用能力更顯得重要。本研究主要目的是,建立一套適合台灣附近區域使用的NOAA(National Oceanic and Atmospheric Administration)繞極衛星大氣溫濕垂直剖面反演方法,並將其結果應用在夏季午後熱對流發生之有利大氣條件分析。
在大氣溫濕剖面反演結果顯示,NOAA衛星反演850、700、500、400及300 hPa大氣溫度(露點)的均方根誤差及相關係數分別為2.47(4.43)、2.18(3.13)、1.76(5.07)、1.97(5.73)、2.05 °C(3.73 °C)及0.83、0.82、0.71、0.76、0.67。在溫度方面,雲覆蓋量小於50%的情況下,各層均方根誤差平均約2.0 °C,標準差約0.5°C,在露點方面,雲覆蓋量小於50%的情況下,各層均方根誤差平均約4.3°C,標準差約0.9°C。
本研究利用衛星資料計算台灣地區附近大氣穩定指數及500 hPa水氣含量,並將其結果應用在實際的個案分析之中,結果顯示:大氣水氣含量的多寡及穩定度的狀態,對夏季午後對流系統的生成與發展同樣的重要。此外藉由2003年6 ~ 9月441個樣本分析,計算出大氣穩定度配合水氣資訊所訂定預測對流降水的門檻值,將此門檻值應用於非2003年的470個獨立個案,也有相當不錯的結果,初步的分析結果顯示,其定量預報對流降水準確率可達約85%,此結果似乎可以提升午後熱對流的預報能力。
Intense convections often occur over the Taiwan area during the afternoons of summer. The relevant mechanisms behind this weather phenomenon is one of the various issues that strongly attracts the attention of meteorologists and forecasters. As the afternoon convection development is very rapid, data observed by traditional methods alone can not produce an early warning, which often results in serious damages to the environment and livelihood of people. Due to the lack of traditional radiosonde observational data near the waters of the Taiwan area, it further emphasizes the importance of the applications in satellite monitoring. The major purpose of this research is to establish a method for the polar-orbiting NOAA-15 satellite in retreiving temperature and dew point profiles over the Taiwan area, then we apply this result in convention environment during the afternoon in summer.
The results of retrieval using temperature and dew point profiles show that the root mean square errors and correlation coefficients of temperature (the dew point) are 2.47 (4.13) 、2.18 (3.13) 、1.76 (5.07) 、1.97 (5.73) 、2.05 (3.73) and 0.83、0.82、0.71、0.76、0.67. About temperature, the r.m.s. error in each layer is nearly 2.0 degrees when the cloud coverage is less than 50% and the standard deviation is about 0.5 degree. Besides, about dew point, the r.m.s. error in each layer is nearly 4.3 degrees when the cloud coverage is less than 50% and the standard deviation is about 0.9 degree.
In this study, we utilize the NOAA satellite data to estimate the atmospheric stability around Taiwan area and moisture at 500 hPa and also apply the results to real cases. It shows that the same importance of both atmospheric moisture content and stability in convention system during the afternoon in summer. Additionally, by using the samples form 2003 June to September (441 cases), we predict the threshold of convective precipitation from atmospheric stability and moisture data and apply to the 470 cases of 2002 also shows good agreements. In elementary analysis, we can get accuracy about 85 % of quantification prediction in precipitation. It shows that the results can improve the prediction of convention system during the afternoon in summer.
林則銘,1975:危害飛行氣象因素客觀預報之研究-雷雨部分-,空軍氣象聯隊研究報告第001號。
吳宗堯、曾忠一、梁文傑,1980:亞洲地區氣象資料之收集檢定與分析及程式處理系統之研究(一)。氣象學報第26卷第1和第2期,1-69.
胡仲英,1977:高空天氣圖客觀分析之研究。大氣科學第4期,1-10.
陳萬金,1994:AVHRR資料在ATOVS反演大氣垂直溫濕剖面之應用。國立中央大學大氣物理研究所博士論文,p.8-25、p.41-51.
曾忠一,1988:大氣衛星遙測學,渤海堂文化事業公司,台北,630頁。
Aires, F., C. Alain, A. S.Noëlle, and B. R. William, 2001:A Regularized Neural Net Approach for Retrieval of Atmospheric and Surface Temperatures with the IASI Instrument. Journal of Applied Meteorology , 41, No. 2, pp. 144–159.
Beebe, R. G., 1958:Tornado proximity soundings. Bull. Amer. Meteor. Soc., 39, 195-201.
Bluestein, H. B., 1993:Observations and Theory of Weather Systems. Vol. 2. Synoptic-Dynamic Meteorology in Midlatitudes, Oxford University Press, 594 pp.
Burpee, R. W., 1979:Peninsula-scale convergence in the south Florida sea breeze. Mon. Wea. Rev., 107, 852-860.
─and L. N. Lahiff,1984:Area-average rainfall variations on sea breeze days in South Florida. Mon. Wea. Rev., 112, 520-534.
Byers, H. R., and H. R. Rodebush, 1948:Causes of thunderstorm of the Florida peninsula. J. Meteor. , 5,275-280.
Carlson, T. N., S. G. Benjamin, G. S. Forbes, and Y. F. Li, 1983:Elevated mixed layers in the regional severe storm environment:Conceptual models and case studies. Mon. Wea. Rev., 111, 1453-1473.
Cifelli, R., L. Carey, W. A. Petersen, and S. A. Rutledge, 2004:An Ensemble Study of Wet Season Convection in Southwest Amazonia: Kinematics and Implications for Diabatic Heating. Journal of Climate, Vol. 17, No. 24, pp. 4692–4707.
Colby, F. P., Jr., 1984:Convective inhibition as a predictor of convection during AVE-SESAME II. Mon. Wea. Rev., 112, 2239-2119.
Cooper, H. J., M. Garstang, and J. Simpson, 1982:The diurnal interaction between convection and peninsular-scale forcing over south Florida. Mon. Wea. Rev., 110, 486-503.
Grody, N. C., F. Weng, and R. Ferraro, 2000:Application of AMSU for Obtaining Hydrological Parameters. Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere, Netherlands, pp.339-351.
Feltz, W. F., W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell, 1998:Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 37, 857-875.
Feltz, W. F., W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell, 2002:Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 42, 584-597.
Frank, N. L., and D. L. Smith, 1968:On the correlation of radar echoes over Florida with various meteorological parameters. J. Appl. Meteor., 7, 712-714
─, P. L. Moore, and G. E. Fisher, 1967:Summer shower distribution over the Florida peninsula as deduced from digitized radar data. J. Appl. Meteor., 6, 309-316.
Gentry, R. C., 1950:Forecasting local showers in Florida during the summer. Mon. Wea. Rev., 78, 41-49.
─and P. L. Moore, 1954:Relation of local and general wind interaction near the sea coast to time and location of air-mass showers. J. Meteor,11,507-511.
Grody, N., J. Zhao, R. Ferraro, F. Weng, and R. Boers, 2001:Determination of Precipitable Water and Cloud Liquid Water Over Oceans from the NOAA15 Advanced Microwave Sounding Unit. J. Geophys. Res.,Vol. 106, pp. 2943-2953
Halverson, J. B., T. Rickenbach, B. Roy, H. Pierce, and E. Williams, 2002:Environmental characteristics of convective systems during TRMM-LBA. Mon. Wea. Rev., 130, 1493–1509.
Henry E. F. and G. B. David, 1994:The Preconvective Environment of Summer Thunderstorms over the Florida Panhandle. Weather and Forecasting, 9, 316-326.
Kidder, S. Q., M. D. Goldberg, R. M. Zehr, M. DeMaria, J. F. Purdom, C. S. Veldon, N. C. Grody, and S. J. Kusselson, 2000:Satellite Analysis of Tropical Cyclones Using the Advanced Microwave Sounder Unit(AMSU). Bull. Amer. Meteor. Soc., Vol. 81, No.6, pp. 1241-1259.
Kidder, S. Q. and T. H. Vonder Haar, 1995:Satellite Meteorology:An Introduction, Academic, San Diego, p. 446
King, J. I. F., 1956:The radiative heat of planet Earth. In ”Scientific uses of Earth satellites”, 133-136, Univ. of Michigan press, Ann Arbor.
Li J., W. Wolf, W. P. Menzel, W. Zhang, H.-L. Huang, T. H. Actor, and H. M. Woolf, 1999:International ATOVS processing package:The algorithm development and its application real data processing. Technical Proceedings of the Tenth International TOVS Study Conference.
Ma, X. L., T. J. Schmit, and W. L. Smith, 1999:A nonlinear physical retrieval algorithm─Its application to the GOES-8/9 sounder. J. Appl. Meteor., 38, 501-513.
Menzel, W. P., F. C. Holt, T. J. Schmit, R. M. Aune, A. J. Schreiner,and D. G.. Gray, 1998:Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc., 79, 2059-2077.
Petersen, R. A., W. F. Feltz, J. Schaefer, and R. Schneider, 2000: An analysis of low-level moisture-flux convergence prior to the 3 May 1999 Oklahoma City tornadoes. Preprints, Proc. 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 619–621.
Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein, and S. A. Rutledge, 2002:TRMM observations of intraseasonal variability in convective regimes over the Amazon. J. Climate, 15, 1278–1294.
Sanders, F., 1986:Temperatures of air parcels lifted from the surface:Background, application, and monograms. Wea. Forecasting, 1, 190-205.
─, and D. O. Blanchard, 1993:The origin of a severe thunderstorm in Kansas on 10 May 1985. Mon. Wea. Rev., 121, 133-148.
Sibson, R., 1981,”A Brief Description of Natural Neighbor Interpolation”,Interpreting Multivariate Data, V. Barnett editor, John Wiley and Sons, New York, p.21-36.
Silvia D., M. A. F., and Coauthors, 2002:Cloud and rain processes in a biosphere–atmosphere interaction context in the Amazon Region. J. Geophys. Res., 107, 8072, doi:10.1029/ 2001JD000335.
Smith, D. L., 1970:The application of digitized radar data to the prediction of summertime convective activity in coastal regions. Proc. 14th Conf. Radar Meteor., Tucson, AZ, Amer. Meteor. Soc., 347-352.
Turner, D. D., W. F. Feltz, and R. A. Ferrare, 2000:Continuous water vapor profiles from operational ground-based active and passive remote sensors. Bull. Amer. Meteor. Soc., 81, 1301-1317.
Ulanski, S. L., and M.Garstang, 1978:The role of surface divergence and vorticity in the life cycle of convective rainfall. PartI:Observation and analysis. J. Atmos. Sci., 35, 1047-1062.
Watson, A. P.,and D. O. Blanchard, 1984:The relationship between total area divergence and convective precipitation in south Florida. Mon. Wea. Rev.,112, 673-685.
─, R. L. Holle, R. E. Lopez, R. Ortiz, and J. R. Nicholson, 1991:Surface wind convergence as a short-term predictor of cloud-to-ground lightning at Kennedy Space Center. Wea. Forecasting, 6, 49-64.
Wayne F. F. and R. M. John, 2002 :Monitoring High-Temporal Resolution Convecti -ve Stability Indices Using the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI) during the 3 May 1999 Oklahoma-Kansas Tornado Outbreak. Weather and Forecasting, 17, 445-455.
Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.
Yen, T. C. and H-J. S. Wang, 1986:A preliminary study TOVS retrieval in Taiwan, R.O.C.. Technical Proceedings of third International TOVS Study conference. Madison, Wisconsin, 18-22 August, 1986, 332-338.